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Figure: A river meander



Figure: A windy road in the Andes



Definition of Bounded Curvature Path

Given (x ,X ), (y ,Y ) ∈ UTM. An arc-length parametrised curve
γ : [0, s]→M connecting these points is a bounded curvature
path if:

I γ starts at x ends at y with fixed tangent vectors X and Y
respectively

I γ is C 1 and piecewise C 2

I ||γ′′(t)|| ≤ κ, for all t ∈ [0, s] when defined, κ > 0 a
constant



Examples



Lester E. Dubins, On plane curves with curvature
Pacific J. Math. 11 (1961), no. 2, 471–481

“Here we only begin the exploration, raise some questions that
we hope will prove stimulating, and invite others to discover the
proofs of the definite theorems, proofs that have eluded us”



Length discontinuities



Existence of many local maxima



An interesting example



The space of bounded curvature paths

Given x,y ∈ UTM, and a maximum curvature κ > 0.

The space of bounded curvature paths defined in M satisfying
x,y ∈ UTM is denoted by Γ(x,y).



Definition

Given γ, η ∈ Γ(x,y). A bounded curvature homotopy between
γ : [0, s0]→M and η : [0, s1]→M corresponds to a continuous
one-parameter family of paths Ht : [0, 1]→ Γ(x,y) such that:

I Ht(0) = γ(t) for t ∈ [0, s0] and Ht(1) = η(t) for t ∈ [0, s1].

I Ht(p) : [0, sp]→M for t ∈ [0, sp] is an element of Γ(x,y) for
all p ∈ [0, 1].



Questions

Given x,y ∈ UTM:

I What are the connected components in Γ(x,y)?

I What are the minimal length elements in the connected
components of Γ(x,y)?

I What can we say about Γ(x,y) in punctured surfaces?

I What if the initial and final vectors are allowed to vary?

I What about Γ(x,y) for M = R3?
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Part I: Minimal length elements in Γ(x,y)

A fragmentation of a bounded curvature path γ : I →M
corresponds to a finite sequence 0 = t0 < t1 . . . < tm = s of
elements in I such that,

L(γ, ti−1, ti ) < r

with,
m∑
i=1

L(γ, ti−1, ti ) = s

We denote by a fragment, the restriction of γ to the interval
determined by two consecutive elements in the fragmentation.



csc paths

x y

x

y

Observe that an arc of a circle can be left L or right R oriented.



Theorem

A fragment is bounded-homotopic to a csc path.

I The csc path β is called replacement path.

I The length of β is at most the length of the fragment.
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Complexity

A cs path is a concatenation of a finite number of line segments,
or arcs of radius r circles.

The complexity of a cs path is number of line segments and
circular arcs.



Theorem

Every bounded curvature path in Γ(x,y) can be altered to cs
form (normalization), so that the path length does not increase.



Proposition

Generic components are not paths of minimal length.



Theorem (global reduction)

A cs path with a generic component is bounded-homotopic to a
cs path with less complexity without increasing its length.



Theorem (Dubins)

Choose x,y ∈ UTR2 and a maximum curvature κ > 0. The
minimal length bounded curvature path in Γ(x,y) is either a:

I ccc path having its middle component of length greater
than πr or a

I csc path where some of the circular arcs or line segments
can have zero length



But want to find the minimal length elements in homotopy
classes.

Are γ1 and γ2 in the same connected component?



Operations on cs paths: A RSL into a LSR

Are these two paths in the same homotopy class?



But want to find the minimal length elements in homotopy
classes.

Are γ1 and γ2 in the same connected component?



We want to make these paths closed paths.

Once we choose a closure path we stick with it!



Definition

Given x,y ∈ UTM together with a prescribed closure path λ.

Γ(n) = {γ ∈ Γ(x,y) | Tλ(γ) = n, n ∈ Z}



Theorem: Minimal length elements in homotopy classes

Given x,y ∈ UTM and n ∈ Z. Then the minimal length
bounded curvature path in Γ(n) for n ∈ Z must be of the form:

I csc or ccc

I cχsc or cscχ or cχcsc

I cχcc or ccχc

Here χ is the minimal number of crossings for paths in Γ(n). In
addition, some of the circular arcs or line segments may have
zero length.



Dubins Explorer



Part II: Isotopy classes of bounded curvature paths

For certain x,y ∈ UTM a family of embedded bounded
curvature paths get encapsulated in some regions in 2-space.



Curvature comparison lemma in 2-space

If a C 2 arc-length paramametrized curve γ : [0, s]→ R2 with
||γ′′(t)|| ≤ κ lies in a radius r disk D. Then either γ is entirely
in ∂(D), or the interior of γ is disjoint from ∂(D).



Diameter lemma in 2-space

A bounded curvature path σ : I → B where,

B = {(x , y) ∈M | − r < x < r , y ≥ 0}

cannot satisfy both:

I σ(0), σ(s) are points on the x-axis;

I If C is a radius r circle with centre on the negative y -axis
and σ(0), σ(s) ∈ C , then some point in Im(σ) lies above C .



Diameter lemma in 2-space



Theorem: diam(Ω) < 4r



Definition

A maximal inflection with respect to x ∈ TM is a minimum
value of the turning map τ : I → R



S-lemma



Theorem

Embedded bounded curvature paths in Ω cannot be made
bounded-homotopic to paths with self intersections.

Embedded bounded curvature paths in Ω get trapped in Ω.



Classification of homotopy classes of bounded curvature
paths

Given x,y ∈ UTM where M = H or R2 we have that:

Γ(x,y) =
⋃
n∈Z

Γ(n) (1)

If x,y ∈ UTM carries a region Ω, then Γ(k) consist of two
homotopy classes:

I one of embedded paths (isotopy class);

I the other consists of paths that wander over the plane



κ-constrained curves

An arc-length parameterised plane curve σ : [0, s]→ R2 is called
a κ-constrained curves if:

I σ is C 1 and piecewise C 2;

I ||σ′′(t)|| ≤ κ, for all t ∈ [0, s] when defined, κ > 0.

The space of κ-constrained curves connecting x to y is denoted
by Σ(x , y).



Example and non examples

Here d(x , y) < 2r



Classification of homotopy classes of κ-constrained curves

Choose x , y ∈M. Then:

|Σ(x , y)| =


1 d(x , y) = 0
2 0 < d(x , y) < 2r
1 d(x , y) ≥ 2r



Work in progress: κ-constrained curves in a disk

d(x , ∂D) < 2r and d(y , ∂D) < 2r

d(x , ∂D) < 2r and d(y , ∂D) ≥ 2r



Deformations of κ-constrained curves in a disk

True for sufficiently large disk.
The radius of D is an important parameter.



A curve in between punctures

Here d(p1, p2) < 2r with curvature bound κ = 1/r



κ-constrained curves in between punctures



κ-constrained curves in a punctured disk

d(x , y) < 2r ; d(p1, p2) < 2r ; d(p1, ∂D) < 2r ; d(p2, ∂D) < 2r



κ-constrained curves in between punctures

Here d(x , y) < 2r



Configuration of punctures pi , x and y in D



What about bc paths in dimension 3?

The only result known is due to H. Sussmann in 1995.

He characterised the length minimisers bounded curvature
paths in R3.



A pinched torus is a local barrier for deformations



Lemma tube (analogous to Lemma band)



Comparison lemma (analogous to the 2-dimensional case)

If a C 2 arc-length paramametrized curve γ : [0, s]→ R3 with
||γ′′(t)|| ≤ κ lies in a radius r ball B. Then either γ is entirely
in ∂(B), or the interior of γ is disjoint from ∂(B).



Theorem: Isotopy condition for bounded curvature paths

An embedded bounded curvature path in Ω ⊂ R3:

I it cannot be deformed to a path outside of the region Ω;

I it cannot be locally deformed to a path with a
self-intersection.



What about physical knots?

I There are many models and approaches to study physical
knots.

I A bounded curvature knot is a piecewise C 2 embedding of
S1 in R3 satisfying a prescribed bound on curvature.
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Isotopy condition for bounded curvature knots

With the “isotopy condition for bc paths” we guarantee that
knots satisfying a bound on curvature may be deformed without
violating the curvature bound –while the knots remain in the
same isotopy class.



Remarks

I Fragmentation process for bc knots

I Existence bc knots in each isotopy class

I Each isotopy class of bc knots may be characterized by the
length of the length minimiser and also the number of
pieces of type C or S (complexity of the knot).



Example of a 3D trapping region



Example of a 3D trapping region



A conjectural Gordian unknot by Pieransky



A conjectural Gordian unknot by Pieransky


	Introduction
	 The Classification of Minimal Length Elements in Spaces of Bounded Curvature of Paths

