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The question

Given two curves on an
orientable surface, are
they homotopic?
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» What does “homotopic” mean?



Surface maps



Surfaces = 2-manifolds

» Connected, compact, Hausdorff space in which every point
has a neighborhood homeomorphic to the plane.

» An orientable surface does not contain a Mobius band.
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Surface classification

Every orientable surface is homeomorphic to a sphere with g
handles, for some integer g=0, called its genus.

Roger Penrose, The Road to Reality (2004)



Surface map

» Graph embedded on a surface so that each face is a disk

» Equivalently: Polygons glued together into a closed surface
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[Riemann 1857; Heawood 1890; Poincaré 1895; Heffter 1898;
Dehn Heegaard 1907, Kerékjarto 1923, Rado 1937; Edmonds 1960;
Youngs 1963; Gross Tucker 1987 ; Mohar Thomassen 20017, ....]



Surface map

» The standard surface representation in graphics and
geometric modeling....
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[Pellenard Morvan Alliez '12]



Surface map

» The standard surface representation in graphics and
geometric modeling, but without vertex coordinates




Map duality

Every surface map X = (V, E, F) has a natural dual map * =
(F*, E*, V*) on the same surface:

» vertices of 2* = faces of &
» edges of 2* = edges of X
» faces of 2* = vertices of 2




Map duality
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Map duality




Data structure

» Both rotation system of X (listing edges around each vertex)
and rotation system of X* (listing edges around each face).

» The same data structure represents both > and 2*.
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Data structure

» Both rotation system of X (listing edges around each vertex)
and rotation system of X* (listing edges around each face).

» The same data structure represents both > and 2*.




Data structure

[Hamilton 1856] [Kirkman 1856]
[Cayley 1857] [Heffter 1891]
[Briickner 1900]....
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y=MLDE, 6§=LCD, ¢= BCL,
A= «lux, D= zucs, ("= ulde, D=121yd, I =fyi.
w=ABLL. i=NKEDCA, u«=ACK.

N=uapi,. L=redye, M= «yfl.




Euler's formula

» For every map (V, E, F) on the orientable surface of genus g:

V-E+F=2—2g|

» ¥ := 2—2q is the Euler characteristic of the map / surface.

[Descartes ¢.1630 (via Leibniz 1676 (via Foucher de Careil 1859)),
Euler 1750, Euler1753, Karsten1768, Meister1/784,
Legendre 1794, Hirsch 1807, I'Huillier 1811, Gavchy-18+1,
Grunert-1827 Von Staudt 1847, Cayley 1861, Listing-1861, ...]



[von Staudt 1847] [Dehn 1936]

Tree-cotree decomposition " . o/ fonsien 2003]

A partition of the edges into three disjoint subsets:

» A spanning tree T
» A spanning cotree C — C* is a spanning tree of G*
» Leftover edges L := E\ (CuT) — Euler’'s formula implies |L| = 2g
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» Continuous deformation




The homotopy problem

» Given two paths or cycles a and B in an orientable surface,
can a be continuously deformed into 3?7

» ... are a and (3 homotopic / in the same homotopy class?



The contractibility problem

» Given a cycle a in an orientable surface, can a be
continuously deformed to a point?

» ...IS a contractible?



Max Dehn 1912

Transformation der Kurven auf zweiseitigen Flachen.

Von ,

M. Denx in Kiel.

Das Problem, das uns im folgenden beschiftigen wird, ist eines der
einfachsten der Topologie: Gegeben sind zwer geschlossene Kurven auf einer h
geschlossenen zweiseitigen Fliche, es st zu unlersuchen, ob swe durch stetige
Deformation inernander iibergefiihrt, ,ineinander transformiert werden kinnen.
Die Losung des Problems fiir Fliachen mit einem Geschlecht p > 1 mit
Hilfe der ,Polygongruppen” und demgemidB auf Grund der Metrik der
hyperbolischen Ebene i1st naheliegend und z. B. von Poincaré (Rend. Cire.
Mat. Pal. 1905) angedeutet, von mir in der Arbeit Math. Ann. 71 ganz genan
entwickelt*) In derselben Arbeit habe ich auch eine Methode angegeben,
um ohne Hilfe der Metrik rein topologisch die Frage zu entscheiden. Bei
der Begriindung dieser Methode habe ich aber sehr wesentlich Eigen-
schaften von Figuren der hyperbolischen Ebene benutzt. — Fiir Flichen
vom Geschlecht p = 0 und p = 1 ist die Losung des Problems sehr ein-
fach: im ersten Fall sind alle Kurven ineinander transformierbar, im




Max Dehn 1912

Transformation of curves on two-sided surfaces
by
M. Dehn in Kiel

The problem we shall consider in what follows is one of the simplest
in topology: Given two closed curves on a closed two-sided surface,
decide whether whether they can be “transformed into each other”
by continuous deformation.
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Transformation of curves on two-sided surfaces -
by
M. Dehn in Kiel

The problem we shall consider in what follows is one of the simplest

in topology: Given two closed curves on a closed two-sided surface,
decide whether whether they can be “transformed into each other”
by continuous deformation. The solution of the problem for surfaces
with genus g>1, with the help of “polygon groups” and accordingly
based on the metric of the hyperbolic plane, is obvious....




Ancient history

» Solvable via covering spaces [schwarz 1870s, Poincaré 1905]
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» Algorithms using hyperbolic geometry [penn 1971] N

¥
Fig. 3.

» Dehn 1912: Purely symbolic/combinatorial algorithms

> Dehn’s technique now called small cancellation
[Lyndon Schupp 1977, Epstein et al 1992, McCammond Wise 2000]

> For any fixed surface, Dehn’s algorithm runs in O(?) time,
where £ = length of input curve(s).



Input

» Surface map 2 with complexity n and genus g

» A closed walk of length £ in the graph of X
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Input

This is what “given
a surface” means!
» Surface map 2 with complexity n and genus g

» A closed walk of length £ in the graph of X
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Input

This is what “given
a surface” means!
» Surface map 2 with complexity n and genus g
» A closed walk of length £ in the graph of X
This is what “given
a curve” means!
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Dehn’s algorithm



System of loops

» 2g loops with common basepoint, which cut the surface
into a disk

» Every cycle in X is homotopic to a concatenation of these
Ioops. [Jordan 1866]

» Dehn assumes that the input cycle is a walk in this graph.

SIS



System of loops

» Contract edges between distinct vertices (spanning tree)

» Delete edges separating distinct faces (spanning cotree)

» Euler's formula = exactly 2g edges left
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System of loops

» Cut the surface along 2g loops — fundamental polygon P with
4g edges

» Edge in G = path of length <2g around boundary of P
» Walk of length 2 in G = walk of length #'<2g¥ in loop system




Universal cover £

» Cut surface along loops — fundamental polygon

» Glue infinitely many fundamental polygons into a plane.
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Universal cover £

When g>1, the universal cover is a regular tiling of the
hyperbolic plane by 4g-gons with vertices of degree 4q.




Universal cover £

» Any point in X has infinitely many
lifts in the universal cover, one for
each homotopy class of loops.

» Every path has infinitely many lifts,
each determined by a lift of one
endpoint. Just follow the “same”
sequence of edges.

» A loop in X is contractible iff it lifts
toaloopin X.
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Universal cover £

» Any point in X~ has infinitely many
lifts in the universal cover, one for
each homotopy class of loops.

» Every path has infinitely many lifts,
each determined by a lift of one
endpoint. Just follow the “same”
sequence of edges.
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Dehn’s algorithm [Dehn 1972]

» Goal: Find a shortest cycle homotopic to the given cycle a.
» Algorithm: Greedily reduce a by local curve shortening.

» Hyperbolic structure = no local minimal!

» Thus a is contractible iff it reduces to nothing.



Dehn’s algorithm [Dehn 1972]

» Key Lemma: Every nontrivial closed walk in £ contains
either a spur or 4g—2 consecutive edges of some face.

» Thus, we can locally shorten any contractible cycle.
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either a spur or 4g—2 consecutive edges of some face.

» Thus, we can locally shorten any contractible cycle.



René Descartes (c.1630)

Progymnasmata De Solidorum Elementis




René Descartes (c.1630)

Progymnasmata De Solidorum Elementis

Let a always denote the number of solid angles and ¢
the number of faces. The total of all plane angles is
4a-8 [right angles], and the number ¢ is 2a-4, if as
many faces as possible are triangles. The number of
planar angles themselves is 6a—12, counting for each
angle a third part of two right angles. Then if | take 3a
for the three planar angles that are required at
minimum to comprise one angle of a solid angle, there
remain 3a—12 that must be added to the solid angles,
according to the terms of the question, so that they are
distributed equally to all parts. The total nhumber of
plane angles is 2¢p—-2a-4, which cannot be larger than
6a-12; if it is less, the excess is 4a—-8-2¢.



Combinatorial Gauss-Bonnet Theorem

» Consider any surface map (V, E, F), possibly with boundary

» Assign an arbitrary exterior angle .c to every corner ¢
» Vertex curvature: x(v) =1 - % deg(v) + 2, _ 4c

» Face curvature: «k(f) =1 — cer 46

2. k(v) + Zfic(f) =y=V—-E+F I

[Descartes 1630, Hilbert Cohn-Vossen 1932, Pélya 1954, Lyndon 1966,
Banchoff 1967, Gromov 1987, McCammond Wise 2000, ...]



Dehn's lemma [Dehn 1912] [Lyndon 1966]

» Consider a simple cycle in £ — no spurs, no self-
intersections. (This is the interesting case.)

» Call a vertex convex if it is incident to exactly one interior
corner. Let V* be the set of convex vertices.



Dehn's lemma [Dehn 1912] [Lyndon 1966]

» Assign angle % to every corner.

> K(v) = Y4 for every convex vertex v
> k(v) = 0 for every non-convex vertex v
> kK(f) =1-g < 0 for every face f

» Discrete Gauss-Bonnet = 2 «(v) + Zf k(f) =1
= |V*| = (4g—4)|F| + 4.
= Some face has = 4g—3 consecutive convex corners. O



Analysis

» Time for greedy reduction:

> Brute force: O(g?) time per edge
» At each step, compare last 2g—2 edges to O(g) patterns

> Smarter: O(1) amortized time per edge
 Use a DFA for pattern matching
» Charge O(g) modification time to the 2g—4 edges removed

» Total time for reduction is O(¢")

» So overall time is O(gn + ¢') = O(gn + g¥)



Linear time contractibility



System of q uads [Lazarus Rivaud 2012]

» Add edges from center of P to corners, delete edges of P
» 2 vertices, 4g edges, 2g quadrilateral faces

» Edge in 2~ = path of length <2 inside P
» Walk of length ¢ in ~ = walk of length #'<22 in quad system
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Dehn’s algorithm

» Goal: Find a shortest cycle homotopic to the given cycle a.
» Algorithm: Greedily reduce a by local curve shortening.
» Hyperbolic structure = no local minima!

» Thus a is contractible iff it reduces to nothing.



Turn sequence

» Consider a closed walk (vo, e1, v1, €2, ..., Vo1, €2).

» Turn T; = number of corners between e;-1 and e; in clockwise
order around v;.

» Turn sequence (To, T1, ..., T¢) is easy to compute in O(¥) time.



Run-length encoding

» Record lengths of maximal runs of equal turns
(1,24,12,2) = (1,2,2,2,2,1,1, 2)
» Easy to compute in O(?) time

» The rest of the algorithm manipulates only run-length
encoded turn sequences.



Spurs and brackets

» Left bracket: 1 2k 1
» Spur: 0
» Right bracket: -1 -2k -1




Bracket Lemma [Gersten Short 1990]

» Every nontrivial contractible cycle in Q contains either a spur
or a bracket.

» Corollary: A cycle is contractible iff it reduces to nothing.
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Bracket Lemma

» Consider a simple cycle in Q — no spurs, no self-
intersections. (This is the interesting case.)

» Label boundary vertices as follows:
© Convex: next to 1 corner

Flat: next to 2 corners o\:—I—I

& Concave: next to =3 corners I : I
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Bracket Lemma

» Consider a simple cycle in Q — no spurs, no self-
intersections. (This is the interesting case.) o

» Label boundary vertices as follows:
© Convex: next to 1 corner

Flat: next to 2 corners

& Concave: next to =3 corners I x




Bracket Lemma

» Assign angle " to every corner. Faces are squares!

e Every face has curvature O
O Convex vertices have curvature +%

Flat vertices have curvature 0

< Concave vertices have curvature < —%

o Interior vertices have curvature < -1 ﬁ % ;

» Combinatorial Gauss-Bonnet: 3’ x(v) = 1 NG [

= #convex = #concave + 4 I O I

—1

= There are at least four brackets!
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Elementary reductions

» Left bracket: x 1 2k 1 y - x—1 -2k y—1
» Spur: X0y - xty
» Right bracket: x -1 -2k -1 y — x+1 2k y+1

xX+1

y+1



Cyclic elementary reductions

» Left bracket: (x 1 2k 1) = (x—=2 -2K) or (1 2k) = (-3 -2k-2)
» Double spur: (0 0) - ()
» Right bracket: (x -1 -2k -1) - (x+1 2K) or (-1 -2k) - (3 2k-2)




Reduction algorithm

mark all runs dirty
<0
repeat
if runs i—4 .. i contain a spur or bracket
perform an elementary reduction
mark the modified runs dirty
i « max{0, i—5}
else
mark run i clean
| « j+1
until all runs are marked clean




Reduction takes O(®) time

» Turn sequence is run-length encoded
= Each iteration takes O(1) time

» Each elementary reduction decreases length by 2
= At most /2 elementary reductions

» Each elementary reduction creates or modifies <5 runs
= At most ¢ + 5¢/2 runs to process
= At most 44 iterations



Free homotopy



The homotopy problem

» Given two paths or cycles a and B in an orientable surface,
can a be continuously deformed into 3?7

» Are a and 3 freely homotopic / in the same free homotopy
class?



Free homotopy

» Goal: Transform each cycle into the unique canonical cycle
in its homotopy class. Two cycles are homotopic if and
only if they yield the same canonical cycle.

> With a smooth hyperbolic metric, each homotopy class has a unique
shortest cycle. [Dehn 1911-12]

> But in our discrete hyperbolic metric, shortest cycles are not unique.

» Algorithm: After shrinking the cycles, shift them to the right

as far as possible without increasing their length.
[Lazarus Rivaud 2012]



[Lazarus Rivaud 2012]

CanOn ical CYCIQS [Erickson Whittlesey 2013]

» A reduced cycle is canonical iff

(1) it has no turn -1
(2) not all turns are —2

» Canonical cycles are as far to the right as possible.




Elementary right shifts

»X <25 =1 -2ty = x+1 1 2s-1 3 2t-1 71 y+1
r»x -1 -2ty = x+1 2t 1 y+1
»X =25 =T y = x+1 1 25 y+1

xX+1

(if >0, t>0)




Cyclic elementary right shifts

» (x -2 -1 -2) —» (x+2 1 2571 3 267 1) (550, t>0, x#-3)
» (x -1 -20) - (x+2 2t 1) (xz-3)

»(x -2s -1) » (x+2 1 23) (xz-3)

» (-3 -25 -1 -2t) o> (1 25 3 21)




Homotopy algorithm

» Reduce both cycles: O(?) time

» Make reduced cycles canonical via right shifts: O(€) time

> Run length encoding = each shift takes O(1) time

> No backtracking required

» Cycles are homotopic iff same canonical cycle: O(?) time



[Lazarus Rivaud 2012]

CO rreCtneSS [Erickson Whittlesey 2013]

» Lemma: Each free homotopy class contains exactly one
canonical cycle.

» Corollary: Two cycles are freely homotopic iff they yield the
same canonical cycle.

» Proof uses Combinatorial Gauss-Bonnet Theorem again

-1 -2 -2 -2




Shortest homotopic paths



Shortest homotopic curves

» Given an arbitrary surface map 2 with weighted edges and a
walk a in 2, find the shortest walk homotopic to a.

> Algorithms we've just seen solve this problem when % is an
unweighted system of loops or system of quads



Tight hexagonal decomposition

4g cycles, each as short as possible in its homotopy class,
that decompose % into “right-angled hexagons”

[Colin de Verdiére, Erickson 2006]



Universal cover

The hexagonal decomposition
lifts to a regular tiling of the
hyperbolic plane with right-
angled hexagons.

[Colin de Verdiére, Erickson 2006]
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Universal cover

The hexagonal decomposition
lifts to a regular tiling of the
hyperbolic plane with right-
angled hexagons.

M. C. Escher, Circle Limit IV: Heaven and Hell (1960)



Universal cover

The hexagonal decomposition
lifts to a regular tiling of the
hyperbolic plane with right-
angled hexagons.
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M. C. Escher, Circle Limit IV: Heaven and Hell (1960)



Universal cover

» Each cycle in the tight
hexagonal decomposition
lifts to a line—an infinite
shortest path—in 2.

» Shortest paths in X cross
each line at most once.

[Colin de Verdiére, Erickson 2006]



Universal cover

» First encode the input
path by the sequence of
lines that it crosses.

» Then reduce the crossing
sequence using small
cancellation.

» The reduced crossing
sequence lists the lines
that 1t crosses an odd
number of times.

[Colin de Verdiére, Erickson 2006]
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Universal cover

» First encode the input
path by the sequence of
lines that it crosses.

» Then reduce the crossing
sequence using small

cancellation.

» The reduced crossing
sequence lists the lines
that 1t crosses an odd
number of times.

[Colin de Verdiére, Erickson 2006]



Relevant region

» Hexagons in universal cover
containing all reduced paths
between endpoints of 1.

» Convex hyperbolic polygon

» Discrete Gauss-Bonnet =
O(x) relevant hexagons

» Comput from the reduced
crossing sequence in O(x)
time.

[Colin de Verdiére, Erickson 2006]
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» Convex hyperbolic polygon
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» Comput from the reduced
crossing sequence in O(x)
time.
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Shortest homotopic paths

» Given a path rt with £ edges in a surface map, the shortest
path homotopic to m can be found in O(gn log n + gn?) time.

> Build a tight hexagonal decomposition — O(gn log n) time

> Compute the crossing sequence of m — O(x) = O(g¥) time

> Reduce crossing sequence via small cancellation — O(x) time
> Build relevant region of £ — O(xn) time

> Find shortest path in relevant region — O(xn) time

[Colin de Verdiére, Erickson 2006]



Higher dimensions?



Undecidability

» Contractibility and homotopy equivalence of curves in non-
manifold 2-complexes and 4-manifolds is undecidable!

> Contractibility = word problem in the fundamental group.

Homotopy = conjugacy problem in the fundamental group.
[Dehn 1911]

> The word and conjugacy problems are undecidable for arbitrary

finitely presented groups.
[Novikov 1954-55] [Boone 1959]

> For any finitely presented group G, there is a 2-complex/4-manifold

whose fundamenal group is G.
[Markov 1958]



3-Manifolds

» Homotopy is decidable, but no explicit time bounds
[Perelman 2003] [Aschenbrenner Friedl Wilton 2015]

> “Brute force” algorithm takes triply exponential time
[Epstein et al. 1992]

» Contractibility of a simple boundary curve is in NP (and

therefore decidable in exponential time).

[Kneser 1929] [Haken 1961] [Hass Lagarias Pippenger 1999]
[Agol Hass Thurston 2006]

» Contractibility of an arbitrary boundary curve is decidable in

exponential time (but not known to be in NP).
[Colin de Verdiéere, Parsa 2017]



3-Manifolds

» Contractibility of a simple boundary curve is in NP (and

therefore decidable in exponential time).

[Kneser 1929] [Haken 1961] [Hass Lagarias Pippenger 1999]
[Agol Hass Thurston 2006]

F1G. 1. Elementary disks in a normal surface.



3-Manifolds

» Contractibility of an arbitrary boundary curve is decidable in

exponential time (but not known to be in NP).
[Colin de Verdiéere, Parsa 2017]

XX

setzt :

[Gauss c.1840] [Dehn 1936]



Thank you!




