
One-Dimensional Computational Topology
III. Shortest nontrivial cycles

Jeff Erickson
University of Illinois, Urbana-Champaign

Today’s Question

Given a surface Σ, find the shortest
topologically nontrivial cycle in Σ.

Trivial cycles

‣ contractible = null-homotopic = boundary of a disk

‣ separating = null-homologous = boundary of a subsurface

separating
noncontractible

separating
contractible

nonseparating
noncontractible

Surface reconstruction

Surface reconstruction

point cloud

scan
object

reconstruct
surface

Surface reconstruction

point cloud

scan
object

Topological noise

‣Measurement errors from the scanning device add extra
handles/tunnels to the reconstructed surface.

An Out-of-core Algorithm for Isosurface Topology

Simplification

Zoë Wood

Caltech

Hugues Hoppe

Microsoft Research

Mathieu Desbrun

U. of So. Cal.

Peter Schröder

Caltech

Many high-resolution surfaces are created through isosurface extraction from volumetric repre-
sentations, obtained by 3D photography, CT, or MRI. Noise inherent in the acquisition process
can lead to geometrical and topological errors. Reducing geometrical errors during reconstruction
is well studied. However, isosurfaces often contain many topological errors in the form of tiny
handles. These nearly invisible artifacts hinder subsequent operations like mesh simplification,
remeshing, and parametrization. In this paper we present an e⇥cient method for removing han-
dles in an isosurface. Our algorithm makes an axis-aligned sweep through the volume to locate
handles, compute their sizes, and selectively remove them. The algorithm is designed for out-of-
core execution. It finds the handles by incrementally constructing and analyzing a surface Reeb
graph. The size of a handle is measured by a short surface loop that breaks it. Handles are
removed robustly by modifying the volume rather than attempting “mesh surgery.” Finally, the
volumetric modifications are spatially localized to preserve geometrical detail. We demonstrate
topology simplification on several complex models, and show its benefit for subsequent surface
processing.

Categories and Subject Descriptors: I.3.0 [Computer Graphics]:

General Terms: Algorithms, Performance

Additional Key Words and Phrases: topological artifacts, genus reduction, surface reconstruction,
marching cubes.

1. INTRODUCTION

Highly accurate geometric models of physical objects are often acquired through discrete

scanning techniques. For example, models are commonly obtained using laser range scan-

ners, computed tomography (CT) or magnetic resonance imaging (MRI). Laser range scan-

ners achieve full coverage of complex objects by acquiring and merging multiple scans.

Many surface reconstruction algorithms perform the merging of scanned data using a vol-

umetric grid representation, in which the model is represented as the zero-contour of its

sampled distance function, i.e., as an isosurface [Curless and Levoy 1996; Hilton et al.

1996; Hoppe et al. 1992; Levoy and others 2000]. Similarly, CT or MRI produce data

volumes from which isosurfaces are extracted [Lorensen and Cline 1987].

Fig. 1. Sequence of progressively closer views revealing an extraneous handle in the Buddha mesh.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY, Pages 1–??.[Wood, Hoppe, Desbrun, Schröder ’04]

Topological noise

‣ These extra tunnels make compression difficult.

[Wood, Hoppe, Desbrun, Schröder ’04]

genus 104 genus 104
50K vertices

genus 6
50K vertices

Connections

‣ Length of shortest noncontractible cycle
▹ systole [Loewner ’49] [Pu ’52] ... [Gromov 83] ...
▹ representativity [Robertson, Seymour 87]

▹ edge-width [Thomassen 90; Mohar, Thomassen 99]

‣ First step of many other topological graph algorithms

‣ Related to broader problems in topological data analysis
▹ Coverage analysis of ad-hoc/sensor networks
▹ Identifying (un)important topological features in high-dimensional

data sets

“Given”?

‣ Input:
▹ Orientable surface map Σ with complexity n and genus g.
▹ Length ℓ(e)≥0 for every edge of Σ

• No other assumptions. Not even the triangle inequality.

“Given”?

‣ Input:
▹ Orientable surface map Σ with complexity n and genus g.
▹ Length ℓ(e)≥0 for every edge of Σ

• No other assumptions. Not even the triangle inequality.

‣ Output:
▹ Minimum-length cycle in the graph of Σ that is noncontractible or

nonseparating in Σ.

Systolic inequalities

‣ Any Riemannian surface can be approximated (up to constant
factors) by a combinatorial triangulation, and vice versa.
▹ discrete→continuous: glue equilateral triangles, smooth vertices
▹ continuous→discrete: intrinsic Voronoi diagram of ε-net

‣ Every Riemannian surface has systole ≤ 
[Gromov 1983, 1992]

⇒ Every triangulated surface map has edgewidth ≤ 
Improves [Hutchinson 1988]

‣ There are Riemannian surfaces with systole ≥ 
[Buser Sarnak 1994]

⇒ There are triangulated surface maps with edgewidth ≥ 
Conjectured by [Przytycka Przytycki 1993]

[Colin de Verdière, Hubard, de Mesmay 2013]

1
3

p
A/g log g

<latexit sha1_base64="AbPyZttYZ6MPtmpJwlvfdAccVjA=">AAACL3icbVC7SgNBFL3r2/iKWoqwGEQLibtaaBmxsVQwJpAsYXZysw7uzKwzs4IMW/k1luoPWPsDYiO2foONuzGFMR4YOJwH3DlhEjNtPO/NGRufmJyanpktzc0vLC6Vl1cutEwVxTqVsVTNkGiMmcC6YSbGZqKQ8DDGRnh1XPiNG1SaSXFubhMMOIkE6zFKTC51yuvtniLU+pndz9y2vlbGHu1GOY1l5EadcsWren24o8QfkEpt62X8GQBOO+WvdlfSlKMwNCZat3wvMYElyjAaY1ZqpxoTQq9IhK2cCsJRB7b/jczdzJWu25Mqf8K4ffV3wxKu9S0P8yQn5lL/9QrxP6+Vmt5hYJlIUoOCDl9BL/PjUAW2qHVRs0gMBWyIimgi9E5BuBRy2OaMKlksm5Xytfy/24ySi72q71X9M79SO4IfzMAabMA2+HAANTiBU6gDhTu4h0d4ch6cV+fd+fiJjjmDzioMwfn8Bo1erOM=</latexit><latexit sha1_base64="OeE7kcGI4zqtuDZypWMQGRnqbB0=">AAACL3icbVC7SgNBFJ1NfMbXqqUIi0G0kLirhZYRG8sIJhGSJcxObtbBnZl1ZlYIw1Z+hY29nY9fsPIHxEZs/QYbdxMLox4YOJwH3DlBHFGlXffVKhTHxicmp6ZLM7Nz8wv24lJDiUQSqBMRCXkaYAUR5VDXVEdwGkvALIigGZwf5n7zEqSigp/ofgw+wyGnPUqwzqSOvdruSUyMl5rd1GmrC6nNwXaY0UiETtixy27FHcD5S7xvUq5uPBef7m6uax37s90VJGHANYmwUi3PjbVvsNSURJCW2omCGJNzHEIroxwzUL4ZfCN11jOl6/SEzB7XzkD92TCYKdVnQZZkWJ+p314u/ue1Et3b9w3lcaKBk9EryFl2HEjf5LUuKBrykYAJQGKFudrKCRNcjNqMEinyZdNStpb3e5u/pLFT8dyKd+yVqwdoiCm0gtbQJvLQHqqiI1RDdUTQFbpFD+jRurderDfrfRgtWN+dZTQC6+MLbD+uzg==</latexit><latexit sha1_base64="OeE7kcGI4zqtuDZypWMQGRnqbB0=">AAACL3icbVC7SgNBFJ1NfMbXqqUIi0G0kLirhZYRG8sIJhGSJcxObtbBnZl1ZlYIw1Z+hY29nY9fsPIHxEZs/QYbdxMLox4YOJwH3DlBHFGlXffVKhTHxicmp6ZLM7Nz8wv24lJDiUQSqBMRCXkaYAUR5VDXVEdwGkvALIigGZwf5n7zEqSigp/ofgw+wyGnPUqwzqSOvdruSUyMl5rd1GmrC6nNwXaY0UiETtixy27FHcD5S7xvUq5uPBef7m6uax37s90VJGHANYmwUi3PjbVvsNSURJCW2omCGJNzHEIroxwzUL4ZfCN11jOl6/SEzB7XzkD92TCYKdVnQZZkWJ+p314u/ue1Et3b9w3lcaKBk9EryFl2HEjf5LUuKBrykYAJQGKFudrKCRNcjNqMEinyZdNStpb3e5u/pLFT8dyKd+yVqwdoiCm0gtbQJvLQHqqiI1RDdUTQFbpFD+jRurderDfrfRgtWN+dZTQC6+MLbD+uzg==</latexit><latexit sha1_base64="SNF1nzulHz+AjFsEbKJw1tI5u/o=">AAACL3icbVDLSsNAFJ3UV62vqEsRgkVwITXRhS5b3LisYB/QhjKZ3qZDMzNxZiKUISu/xqX6MeJG3PoNbkxqF7b1wMDhPODOCeKIKu2671ZhaXllda24XtrY3NresXf3mkokkkCDiEjIdoAVRJRDQ1MdQTuWgFkQQSsYXed+6wGkooLf6XEMPsMhpwNKsM6knn3YHUhMjJeai9TpqnupTe0szGgkQifs2WW34k7gLBJvSspoinrP/u72BUkYcE0irFTHc2PtGyw1JRGkpW6iIMZkhEPoZJRjBso3k2+kznGm9J2BkNnj2pmofxsGM6XGLMiSDOuhmvdy8T+vk+jBlW8ojxMNnMxeQYbZcSB9k9f6oGjIZwImAIkV5uo0J0xwMWszSqTIl01L2Vre/DaLpHle8dyKd+uVq7XpbkV0gI7QCfLQJaqiG1RHDUTQI3pCL+jVerberA/r8zdasKadfTQD6+sHmjGq7w==</latexit>

2
3

p
A/g log g

<latexit sha1_base64="cdwEMKOdRwA6XQvkPIt0ztq/5w4=">AAACL3icbVC7SgNBFL3r2/iKWoqwGEQLibux0DJiY6lgVEiWMDu52QzZmVlnZoUwbOXXWKo/YO0PiI3Y+g027kYLox4YOJwH3DlhEjNtPO/FGRufmJyanpktzc0vLC6Vl1fOtUwVxQaVsVSXIdEYM4ENw0yMl4lCwsMYL8L+UeFfXKPSTIozM0gw4CQSrMsoMbnULq+3uopQW8vsXua29JUy9nA3ymksIzdqlyte1RvC/Uv8b1Kpbz2NPwLASbv80epImnIUhsZE66bvJSawRBlGY8xKrVRjQmifRNjMqSAcdWCH38jczVzpuF2p8ieMO1R/NizhWg94mCc5MT392yvE/7xmaroHgWUiSQ0KOnoF7eXHoQpsUeugZpEYCdgQFdFE6J2CcCnkqM0ZVbJYNivla/m/t/lLzmtV36v6p36lfghfmIE12IBt8GEf6nAMJ9AACjdwC/fw4Nw5z86r8/YVHXO+O6swAuf9E48hrOQ=</latexit><latexit sha1_base64="Mr4xuOkv9kUACyjWjG0bc/R8jKc=">AAACL3icbVC7SgNBFJ31GeNr1VKExSBaSNyNhZYRG8sIJgrJEmYnN+vgzsw6MyuEYSu/wsbezscvWPkDYiO2foONuzGFiR4YOJwH3DlBHFGlXffNGhufmJyaLswUZ+fmFxbtpeWGEokkUCciEvIswAoiyqGuqY7gLJaAWRDBaXBxmPunVyAVFfxE92LwGQ457VKCdSa17bVWV2JiKqnZTZ2WupTaHOyEGY1E6IRtu+SW3T6cv8QbkFJ182X8+f72pta2v1odQRIGXJMIK9X03Fj7BktNSQRpsZUoiDG5wCE0M8oxA+Wb/jdSZyNTOk5XyOxx7fTV3w2DmVI9FmRJhvW5GvVy8T+vmejuvm8ojxMNnAxfQc6z40D6Jq91QNGQDwVMABIrzNV2TpjgYthmlEiRL5sWs7W80W3+kkal7Lll79grVQ/QDwpoFa2jLeShPVRFR6iG6oiga3SHHtGT9WC9Wu/Wx090zBp0VtAQrM9vbgKuzw==</latexit><latexit sha1_base64="Mr4xuOkv9kUACyjWjG0bc/R8jKc=">AAACL3icbVC7SgNBFJ31GeNr1VKExSBaSNyNhZYRG8sIJgrJEmYnN+vgzsw6MyuEYSu/wsbezscvWPkDYiO2foONuzGFiR4YOJwH3DlBHFGlXffNGhufmJyaLswUZ+fmFxbtpeWGEokkUCciEvIswAoiyqGuqY7gLJaAWRDBaXBxmPunVyAVFfxE92LwGQ457VKCdSa17bVWV2JiKqnZTZ2WupTaHOyEGY1E6IRtu+SW3T6cv8QbkFJ182X8+f72pta2v1odQRIGXJMIK9X03Fj7BktNSQRpsZUoiDG5wCE0M8oxA+Wb/jdSZyNTOk5XyOxx7fTV3w2DmVI9FmRJhvW5GvVy8T+vmejuvm8ojxMNnAxfQc6z40D6Jq91QNGQDwVMABIrzNV2TpjgYthmlEiRL5sWs7W80W3+kkal7Lll79grVQ/QDwpoFa2jLeShPVRFR6iG6oiga3SHHtGT9WC9Wu/Wx090zBp0VtAQrM9vbgKuzw==</latexit><latexit sha1_base64="rHgx1a6y2GeNKcNam8NsY+Qpzdg=">AAACL3icbVDLSsNAFJ3UV62vqEsRgkVwITWpC122uHFZwT6gDWUyvU2HZmbizEQoQ1Z+jUv1Y8SNuPUb3JjULmz1wMDhPODOCeKIKu26b1ZhaXllda24XtrY3NresXf3WkokkkCTiEjIToAVRJRDU1MdQSeWgFkQQTsYX+V++x6kooLf6kkMPsMhp0NKsM6kvn3YG0pMTDU156nTU3dSm/pZmNFIhE7Yt8tuxZ3C+Uu8GSmjGRp9+6s3ECRhwDWJsFJdz421b7DUlESQlnqJghiTMQ6hm1GOGSjfTL+ROseZMnCGQmaPa2eq/m4YzJSasCBLMqxHatHLxf+8bqKHl76hPE40cDJ/BRllx4H0TV4bgKIhnwuYACRWmKvTnDDBxbzNKJEiXzYtZWt5i9v8Ja1qxXMr3o1XrtVnuxXRATpCJ8hDF6iGrlEDNRFBD+gRPaMX68l6td6tj59owZp19tEcrM9vm/Sq8A==</latexit>

2
p

n/g log g
<latexit sha1_base64="BT8G3eDcaFLm8SkxGcsa77Zckc0=">AAACJXicbVBNS8NAFHypX7V+RT16iRbBg9SkFz14KIjgUcGq0ISy2b7GpdnduLsRSuhv8aj+GG8ieNL/4cWk9mCsAw+GmXkwTJjETBvXfbcqM7Nz8wvVxdrS8srqmr2+caVlqii2qYylugmJxpgJbBtmYrxJFBIexngdDk4K//oelWZSXJphggEnkWB9RonJpa692XR8fadMJg6ikePHMnKirl13G+4YzjTxJqTe2vZPPwHgvGt/+T1JU47C0Jho3fHcxAQZUYbRGEc1P9WYEDogEXZyKghHHWTj8iNnN1d6Tl+q/IRxxurvj4xwrYc8zJOcmFv91yvE/7xOavpHQcZEkhoUtNyC3ublUAVZ8dZDzSJRCmQhKqKJ0PsF4VLIss0ZVbLYc1TL1/L+bjNNrpoNz214F169dQw/qMIW7MAeeHAILTiDc2gDhSE8wBM8W4/Wi/Vqvf1EK9bkZxNKsD6+AQhwqHs=</latexit><latexit sha1_base64="MgxXgBSQUWJvFvPt8TX5aC34Bsc=">AAACJXicbVDNSsNAGNz4W+tftDe9RIvgQWrSix48FEQQTxXsDzShbLZf06XZ3bi7EUros3hUH8abFDz5BD6BF5O2B9s68MEwMx8M40chVdq2P42l5ZXVtfXcRn5za3tn19zbrysRSwI1IkIhmz5WEFIONU11CM1IAmZ+CA2/f535jSeQigr+oAcReAwHnHYpwTqV2mahbLnqUeqEnwdDyw1FYAVts2iX7DGsReJMSbFy5N583x2Mqm3zx+0IEjPgmoRYqZZjR9pLsNSUhDDMu7GCCJM+DqCVUo4ZKC8Zlx9aJ6nSsbpCpse1NVb/fiSYKTVgfppkWPfUvJeJ/3mtWHcvvYTyKNbAyWwL0kvLgfSS7K0DigZ8JpD4ILHCXJ1lhAkuZm1GiRTZnsN8upYzv80iqZdLjl1y7p1i5QpNkEOH6BidIgddoAq6RVVUQwQN0DN6RW/Gi/FufBijSXTJmP4U0AyMr1/xRqnC</latexit><latexit sha1_base64="MgxXgBSQUWJvFvPt8TX5aC34Bsc=">AAACJXicbVDNSsNAGNz4W+tftDe9RIvgQWrSix48FEQQTxXsDzShbLZf06XZ3bi7EUros3hUH8abFDz5BD6BF5O2B9s68MEwMx8M40chVdq2P42l5ZXVtfXcRn5za3tn19zbrysRSwI1IkIhmz5WEFIONU11CM1IAmZ+CA2/f535jSeQigr+oAcReAwHnHYpwTqV2mahbLnqUeqEnwdDyw1FYAVts2iX7DGsReJMSbFy5N583x2Mqm3zx+0IEjPgmoRYqZZjR9pLsNSUhDDMu7GCCJM+DqCVUo4ZKC8Zlx9aJ6nSsbpCpse1NVb/fiSYKTVgfppkWPfUvJeJ/3mtWHcvvYTyKNbAyWwL0kvLgfSS7K0DigZ8JpD4ILHCXJ1lhAkuZm1GiRTZnsN8upYzv80iqZdLjl1y7p1i5QpNkEOH6BidIgddoAq6RVVUQwQN0DN6RW/Gi/FufBijSXTJmP4U0AyMr1/xRqnC</latexit><latexit sha1_base64="CKXJjy1jCMFW2XkaJCjNmkoMZRI=">AAACJXicbVBLS8NAGNzUV62vaI9egkXwIDXpRQ8eCl48VrAPaELZbL+mS7O7cXcjlJDf4lH9Md5E8OQP8WJSczCtAx8MM/PBMH4UUqVt+9OorK1vbG5Vt2s7u3v7B+bhUU+JWBLoEhEKOfCxgpBy6GqqQxhEEjDzQ+j7s5vc7z+CVFTwez2PwGM44HRCCdaZNDLrLctVD1In/CJILTcUgRWMzIbdtBewVolTkAYq0BmZ3+5YkJgB1yTESg0dO9JegqWmJIS05sYKIkxmOIBhRjlmoLxkUT61TjNlbE2EzI5ra6H+/UgwU2rO/CzJsJ6qZS8X//OGsZ5ceQnlUayBk3ILMs3KgfSS/G0Miga8FEh8kFhhrs5zwgQXZZtRIkW+Z1rL1nKWt1klvVbTsZvOndNoXxe7VdExOkFnyEGXqI1uUQd1EUFz9IRe0KvxbLwZ78bHb7RiFD91VILx9QMxAaaZ</latexit>

1
7

p
n/g log g

<latexit sha1_base64="CSU17sK5hVKBtUG+72EapBR4Q/E=">AAACL3icbVC7SgNBFL3rM8ZX1FKExSBYSNy1iYVFwMZSxWggWeLs5GYd3JlZZ2aFMGzlR/gNlurHiI3Y+g027sYURj0wcDgPuHPCJGbaeN6rMzE5NT0zW5orzy8sLi1XVlbPtUwVxSaVsVStkGiMmcCmYSbGVqKQ8DDGi/D6sPAvblFpJsWZGSQYcBIJ1meUmFzqVjY6fUWo9TNbz9yOvlHGit0op7GM3KhbqXo1bwj3L/FHpNqo3p9eAsBxt/LZ6UmachSGxkTrtu8lJrBEGUZjzMqdVGNC6DWJsJ1TQTjqwA6/kblbudJz+1LlTxh3qP5sWMK1HvAwT3JirvRvrxD/89qp6e8HlokkNSjo+BX0Kj8OVWCLWg81i8RYwIaoiCZC7xSESyHHbc6oksWyWTlfy/+9zV9yvlfzvZp/4lcbB/CNEqzDJmyDD3VowBEcQxMo3MEDPMGz8+i8OG/O+3d0whl11mAMzscXc52sxw==</latexit><latexit sha1_base64="jFB82KNZDA29C2tDnajWv3WMZH0=">AAACL3icbVDLSsNAFJ3UV62vqksRgkFwITVxowsXBTcuq1gttKFOprfp0MxMnJkIMmTlR/gNulM/RtyIW7/BjUl1YVoPDBzOA+6cII6o0q77ZpWmpmdm58rzlYXFpeWV6urahRKJJNAkIhKyFWAFEeXQ1FRH0IolYBZEcBkMj3P/8gakooKf69sYfIZDTvuUYJ1J3epmpy8xMV5qDlK7o66lNnwvzGgkQjvsVh235o5gTxLvlzh15/7s/OoRGt3qV6cnSMKAaxJhpdqeG2vfYKkpiSCtdBIFMSZDHEI7oxwzUL4ZfSO1tzOlZ/eFzB7X9kj92zCYKXXLgizJsB6ocS8X//Paie4f+obyONHASfEKMsiOA+mbvNYDRUNeCJgAJFaYq92cMMFF0WaUSJEvm1aytbzxbSbJxX7Nc2veqefUj9APymgDbaEd5KEDVEcnqIGaiKA79ICe0Yv1ZL1a79bHT7Rk/XbWUQHW5zeGu64q</latexit><latexit sha1_base64="jFB82KNZDA29C2tDnajWv3WMZH0=">AAACL3icbVDLSsNAFJ3UV62vqksRgkFwITVxowsXBTcuq1gttKFOprfp0MxMnJkIMmTlR/gNulM/RtyIW7/BjUl1YVoPDBzOA+6cII6o0q77ZpWmpmdm58rzlYXFpeWV6urahRKJJNAkIhKyFWAFEeXQ1FRH0IolYBZEcBkMj3P/8gakooKf69sYfIZDTvuUYJ1J3epmpy8xMV5qDlK7o66lNnwvzGgkQjvsVh235o5gTxLvlzh15/7s/OoRGt3qV6cnSMKAaxJhpdqeG2vfYKkpiSCtdBIFMSZDHEI7oxwzUL4ZfSO1tzOlZ/eFzB7X9kj92zCYKXXLgizJsB6ocS8X//Paie4f+obyONHASfEKMsiOA+mbvNYDRUNeCJgAJFaYq92cMMFF0WaUSJEvm1aytbzxbSbJxX7Nc2veqefUj9APymgDbaEd5KEDVEcnqIGaiKA79ICe0Yv1ZL1a79bHT7Rk/XbWUQHW5zeGu64q</latexit><latexit sha1_base64="LCGnCy6h6BPEOgfmh7c4Zvdsyzc=">AAACL3icbVDLSsNAFJ34rPVVdSlCsAgupCZu6sJFwY3LCvYBTSiT6U06NDMTZyZCGbLya1yqHyNuxK3f4MakdmFbDwwczgPunCCJqdKO824tLa+srq2XNsqbW9s7u5W9/bYSqSTQIiIWshtgBTHl0NJUx9BNJGAWxNAJRteF33kAqajgd3qcgM9wxGlICda51K8ceaHExLiZqWe2p+6lNvw8ymksIjvqV6pOzZnAXiTulFTRFM1+5dsbCJIy4JrEWKme6yTaN1hqSmLIyl6qIMFkhCPo5ZRjBso3k29k9kmuDOxQyPxxbU/Uvw2DmVJjFuRJhvVQzXuF+J/XS3V46RvKk1QDJ7NXkGF+HEjfFLUBKBrxmYAJQGKFuTorCBNczNqMEimKZbNyvpY7v80iaV/UXKfm3rrVxtV0txI6RMfoFLmojhroBjVRCxH0iJ7QC3q1nq0368P6/I0uWdPOAZqB9fUD7NurGw==</latexit>

Tree-cotree structures

Tree-cotree decomposition

A partition of the edges into three disjoint subsets:
‣ A spanning tree T
‣ A spanning cotree C — C* is a spanning tree of G*
‣ Leftover edges L := E \ (C∪T) — Euler’s formula implies |L| = 2g

[von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

Tree-cotree decomposition

A partition of the edges into three disjoint subsets:
‣ A spanning tree T
‣ A spanning cotree C — C* is a spanning tree of G*
‣ Leftover edges L := E \ (C∪T) — Euler’s formula implies |L| = 2g

[von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

Tree-cotree decomposition

A partition of the edges into three disjoint subsets:
‣ A spanning tree T
‣ A spanning cotree C — C* is a spanning tree of G*
‣ Leftover edges L := E \ (C∪T) — Euler’s formula implies |L| = 2g

[von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

Tree-cotree decomposition

A partition of the edges into three disjoint subsets:
‣ A spanning tree T
‣ A spanning cotree C — C* is a spanning tree of G*
‣ Leftover edges L := E \ (C∪T) — Euler’s formula implies |L| = 2g

[von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

Fundamental loops and cycles

‣ Fix a tree-cotree decomposition (T, L, C) and a basepoint x.

‣ Nontree edge uv defines a fundamental loop loop(T,uv):
▹ path from x to u + uv + path from v to x

‣ Nontree edge uv defines a fundamental cycle cycle(T,uv):
▹ unique cycle in T∪{uv}
▹ path from lca(u,v) to u + uv + path from v to lca(u,v)

Tree-cotree structures

‣ System of loops {loop(T, e) | e ∈ L}
▹ Cutting Σ along these loops leaves a disk
▹ Basis for the fundamental group π1(Σ, x)

Tree-cotree structures

‣ System of cycles {cycle(T, e) | e ∈ L}
▹ 2g simple cycles
▹ Basis for the first homology group H1(Σ)

Tree-cotree structures

‣ Cut graph T∪L = Σ\C

‣ Remove degree-1 vertices ⇒ reduced cut graph
▹ Minimal subgraph with one face
▹ Composed of at most 3g cut paths meeting at most 2g branch points

Tree-cotree structures

‣ Often useful to build these structures in the dual map Σ*.
▹ dual system of loops
▹ dual cut graph
▹ dual system of cocycles = basis for first cohomology group H1(Σ)

Tree-cotree structures

‣ Every noncontractible cycle in Σ crosses every (dual)
reduced cut graph.

‣ Every nonseparating cycle in Σ crosses at least one
(co)cycle in every system of (co)cycles.

Shortest nontrivial cycles, take 1

Three-path condition

‣ Any three paths with the same endpoints define three
cycles.

‣ If any two of these cycles are trivial, so is the third.

[Thomassen 1990]

Three-path condition

‣ The shortest nontrivial cycle consists of two shortest paths
between any pair of antipodal points.

‣ Otherwise, the actual shortest path would create a shorter
nontrivial cycle.

[Thomassen 1990]

Greedy tree-cotree decomposition

‣ Assume edges have lengths ℓ(e) ≥ 0

‣ T = shortest-path tree in Σ with arbitrary source vertex x
▹ = BFS tree if all lengths = 1

‣ C* = maximum spanning tree of Σ* where w(e*) = ℓ(loop(T,e))

‣ Computable in O(n log n) time using textbook algorithms.
▹ O(n) time if all lengths = 1
▹ O(n) time if g=O(n1–ε) [Henzinger et al. ’97]

[Eppstein 2003, Erickson Whittlesey 2005]

Shortest nontrivial loops

‣ Build greedy tree-cotree decomposition (T, L, C) based at x.
‣ Build dual cut graph X* = L*∪C*

‣ Reduce X* to get R*

[Erickson Har-Peled 2005]

Shortest nontrivial loops

‣ 3-path condition ⇒ We want loop(T, e) for some e∉T
‣ loop(T, e) is noncontractible iff e*∈R*
‣ loop(T, e) is nonseparating iff e*∈R* and R*\e* is connected

[Erickson Har-Peled 2005]
[Cabello, Colin de Verdière, Lazarus 2010]

‣ 3-path condition ⇒ We want loop(T, e) for some e∉T
‣ loop(T, e) is noncontractible iff e*∈R*
‣ loop(T, e) is nonseparating iff R*\e* is connected

Shortest nontrivial loops

[Erickson Har-Peled 2005]
[Cabello, Colin de Verdière, Lazarus 2010]

Shortest non-trivial cycle

‣ For each basepoint: O(n log n) time.

‣ Try all possible basepoints: O(n2 log n) time.

[Erickson Har-Peled 2005]

Shortest non-trivial cycle

‣ For each basepoint: O(n log n) time.

‣ Try all possible basepoints: O(n2 log n) time.

‣ This is the fastest algorithm known.

▹ Significant improvement would also improve the best time to
compute the girth of a sparse graph: O(n2) = BFS at each vertex  
[Itai Rodeh 1978]

▹ Computing the girth of a dense graph is at least as hard as all-pairs
shortest paths and boolean matrix multiplication. 
[Vassilevska Williams, Williams 2010]

[Erickson Har-Peled 2005]

One-cross lemmas

‣ The shortest nontrivial cycle crosses any shortest path at
most once

‣ Otherwise, we could find a shorter nontrivial cycle!

One-cross lemmas

‣ Let γ* be the shortest nonseparating cycle, and let γ be any
cycle in a greedy system of cycles.

‣ Then γ* and γ cross at most once.

[Cabello Mojar 2005]

Faster algorithm

To compute the shortest nonseparating cycle:
▹ Compute a greedy system of cycles γ1, γ2, ..., γ2g

▹ Find the shortest cycle that crosses each greedy cycle γi once

[Cabello Chambers 2007]

Algorithm

‣ To find the shortest cycle that crosses γi once:
▹ Cut the surface open along γi. Resulting surface Σ✂γi has two copies

of γ on its boundary.

▹ Find the shortest path in Σ✂γi between the clones of each vertex of γi

[Cabello Chambers 2007]

Multiple-Source Shortest Paths

[Free Gruchy (“Slow-Mo Guys”) 2018]

Multiple-Source Shortest Paths

[Free Gruchy (“Slow-Mo Guys”) 2018]

Multiple-Source Shortest Paths

‣ Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.

[Klein 2005]

Multiple-Source Shortest Paths

‣ Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.

[Klein 2005]

Multiple-Source Shortest Paths

‣ Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.

[Klein 2005]

Multiple-Source Shortest Paths

‣ Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.

[Klein 2005]

Multiple-Source Shortest Paths

‣ Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.

[Klein 2005]

Naïve algorithm

‣ For each boundary vertex s, compute the shortest-path tree
rooted at s in O(n log n) time. [Dijkstra 1956]

‣ The overall algorithm runs in O(n2 log n) time.

‣ But in fact, we can (implicitly) compute all such distances in
just O(g2n log n) time.

Planar MSSP

‣ Let’s start with the simplest possible setting.

‣ Implicitly compute shortest paths in a plane graph G from
every boundary vertex to every other vertex.

[Klein 2005]

Planar MSSP

‣ Let’s start with the simplest possible setting.

‣ Implicitly compute shortest paths in a plane graph G from
every boundary vertex to every other vertex.

[Klein 2005]

Planar MSSP

‣ Let’s start with the simplest possible setting.

‣ Implicitly compute shortest paths in a plane graph G from
every boundary vertex to every other vertex.

[Klein 2005]

Planar MSSP

‣ Let’s start with the simplest possible setting.

‣ Implicitly compute shortest paths in a plane graph G from
every boundary vertex to every other vertex.

[Klein 2005]

Planar MSSP

‣ Intuitively, we want the shortest-path tree rooted at every
boundary vertex.

[Klein 2005]

Planar MSSP

‣ Intuitively, we want the shortest-path tree rooted at every
boundary vertex.

[Klein 2005]

Planar MSSP

‣ In fact, we only need to compute the first shortest-path tree,
followed by changes from each tree to the next.

[Klein 2005]

Planar MSSP

‣ In fact, we only need to compute the first shortest-path tree,
followed by changes from each tree to the next.

[Klein 2005]

Planar MSSP

‣ In fact, we only need to compute the first shortest-path tree,
followed by changes from each tree to the next.

[Klein 2005]

Planar MSSP

‣ In fact, we only need to compute the first shortest-path tree,
followed by changes from each tree to the next.

[Klein 2005]

The disk-tree lemma

‣ Let T be any tree embedded on a closed disk. Vertices of T
subdivide the boundary of the disk into intervals.

‣ Deleting any edge splits T into two subtrees R and B.

‣ At most two intervals have one end in R and the other in B.

The disk-tree lemma

‣ Let T be any tree embedded on a closed disk. Vertices of T
subdivide the boundary of the disk into intervals.

‣ Deleting any edge splits T into two subtrees R and B.

‣ At most two intervals have one end in R and the other in B.

The disk-tree lemma

‣ Let T be any tree embedded on a closed disk. Vertices of T
subdivide the boundary of the disk into intervals.

‣ Deleting any edge splits T into two subtrees R and B.

‣ At most two intervals have one end in R and the other in B.

Number of pivots

‣ Each directed edge x→y pivots in at most once.

▹ Consider the tree of shortest paths ending at y.

x

y

Number of pivots

‣ Each directed edge x→y pivots in at most once.

▹ Consider the tree of shortest paths ending at y.

x

y

Number of pivots

‣ Each directed edge x→y pivots in at most once.

▹ Consider the tree of shortest paths ending at y.

x→y pivots in

x→y pivots out

x

y

Number of pivots

‣ So the overall number of pivots is only O(n)!

x→y pivots in

x→y pivots out

x

y

Number of pivots

‣ So the overall number of pivots is only O(n)!

‣ But how do we find these pivots quickly?

x→y pivots in

x→y pivots out

x

y

How shortest paths work

‣ Input:
▹ Directed graph G = (V, E)
▹ length ℓ(u→v) for each edge u→v
▹ A source vertex s.

‣ Each vertex v maintains two values:
▹ dist(v) is the length of some path from s to v
▹ pred(v) is the next-to-last vertex of that path from s to v.

[Ford 1956]

3 2

1

0 5
10

8

4

4

7
12

3

10

0

7

17

12

3

7

‣ Edge u→v is tense iff dist(v) ≥ dist(u) + ℓ(u→v).

3 2

1

0 5
10

8

4

4

7
12

3

10

0

7

17

12

3

7

How shortest paths work [Ford 1956]

‣ Edge u→v is tense iff dist(v) ≥ dist(u) + ℓ(u→v).

How shortest paths work [Ford 1956]

3 2

1

0 5
10

8

4

4

7
12

3

10

0

7

17

12

3

7

3 2

1

0 5
10

8

4

4

7
12

3

10

0

7

17

12

3

7

‣ Edge u→v is tense iff dist(v) ≥ dist(u) + ℓ(u→v).

‣ To relax u→v, set dist(v) = dist(u) + ℓ(u→v) and pred(v) = u

How shortest paths work [Ford 1956]

3 2

1

0 5
10

8

4

4

7
12

3

10

0

7

17

12

3

4

‣ Edge u→v is tense iff dist(v) ≥ dist(u) + ℓ(u→v).

‣ To relax u→v, set dist(v) = dist(u) + ℓ(u→v) and pred(v) = u

How shortest paths work [Ford 1956]

3 2

1

0 5
10

8

4

4

7
12

3

10

0

7

17

12

3

4

‣ Edge u→v is tense iff dist(v) ≥ dist(u) + ℓ(u→v).

‣ To relax u→v, set dist(v) = dist(u) + ℓ(u→v) and pred(v) = u

How shortest paths work [Ford 1956]

‣ Edge u→v is tense iff dist(v) ≥ dist(u) + ℓ(u→v).

‣ If no edges are tense, then dist(v) is the length of the
shortest path from s to v, for every vertex v.

How shortest paths work [Ford 1956]

3 2

1

0 5
10

8

4

4

7
12

3

7

0

4

14

9

3

4

Back to MSSP

‣Maintain the shortest path tree rooted at a point s that is
moving continuously around the outer face.

‣ Also maintain the slack of each edge u→v:
slack(u→v) := dist(u) + ℓ(u→v) – dist(v)

‣ Distances and slacks change continuously with s, but in a
controlled manner.

‣ The shortest path tree is correct as long as slack(u→v)>0
for every edge u→v.

[Cabello Chambers Erickson 2013]

u vs

Distance and slack changes

‣ Red: dist growing
‣ Blue: dist shrinking

[Doppler 1842]
[Fizeau 1848]

u vs

Distance and slack changes

‣ Red: dist growing
‣ Blue: dist shrinking

‣ Red→red: slack constant
‣ Blue→blue: slack constant
‣ Red→blue: slack growing
‣ Blue→red: slack shrinking

[Doppler 1842]
[Fizeau 1848]

u vs

Distance and slack changes

‣ Red: dist growing
‣ Blue: dist shrinking

‣ Red→red: slack constant
‣ Blue→blue: slack constant
‣ Red→blue: slack growing
‣ Blue→red: slack shrinking
▹ active edges

[Doppler 1842]
[Fizeau 1848]

u vs

Tree-cotree decomposition

‣ Complementary dual
spanning tree C* = (G\T)*

‣ Red and blue subtrees are
separated by a path in C*

‣ Active edges are dual to
edges in this path.

[von Staudt 1847]

[Dehn 1936]
[Whitney 1932]

su v

Tree-cotree decomposition

‣ Complementary dual
spanning tree C* = (G\T)*

‣ Red and blue subtrees are
separated by a path in C*

‣ Active edges are dual to
edges in this path.

[von Staudt 1847]

[Dehn 1936]
[Whitney 1932]

su v

Pivot

‣When slack(u→v) becomes 0, relax u→v

▹ Delete pred(v)→v from T
▹ Insert u→v into T.
▹ Delete (u→v)* from C*.
▹ Insert (pred(v)→v)* into C*
▹ Set pred(u) := v

[Ford 1956]

su v

Pivot

‣When slack(u→v) becomes 0, relax u→v

▹ Delete pred(v)→v from T
▹ Insert u→v into T.
▹ Delete (u→v)* from C*.
▹ Insert (pred(v)→v)* into C*
▹ Set pred(u) := v

[Ford 1956]

su v

Pivot

‣When slack(u→v) becomes 0, relax u→v

▹ Delete pred(v)→v from T
▹ Insert u→v into T.
▹ Delete (u→v)* from C*.
▹ Insert (pred(v)→v)* into C*
▹ Set pred(u) := v

[Ford 1956]

su v

Pivot

‣When slack(u→v) becomes 0, relax u→v

▹ Delete pred(v)→v from T
▹ Insert u→v into T.
▹ Delete (u→v)* from C*.
▹ Insert (pred(v)→v)* into C*
▹ Set pred(u) := v

[Ford 1956]

su v

Pivot

‣When slack(u→v) becomes 0, relax u→v

▹ Delete pred(v)→v from T
▹ Insert u→v into T.
▹ Delete (u→v)* from C*.
▹ Insert (pred(v)→v)* into C*
▹ Set pred(u) := v

[Ford 1956]

su v

Pivot

‣When slack(u→v) becomes 0, relax u→v

▹ Delete pred(v)→v from T
▹ Insert u→v into T.
▹ Delete (u→v)* from C*.
▹ Insert (pred(v)→v)* into C*
▹ Set pred(u) := v

[Ford 1956]

su v

‣ Vertices can only change from red to blue.

‣ So any edge that pivots into T stays in T.

su v

Pivots

‣ Vertices can only change from red to blue.

‣ So any edge that pivots into T stays in T.

Pivots

su v

Fast implementation

‣We maintain T and C* in dynamic forest data structures that
support the following operations in O(log n) amortized time:

▹ Remove and insert edges:
• CUT(uv), LINK(u,v)

▹ Maintain distances at vertices of T:
• GETNODEVALUE(v), ADDSUBTREE(Δ, v)

▹ Maintain slacks at edges of C*:
• GETDARTVALUE(u︎→v), ADDPATH(Δ, u, v), MINPATH(u, v)

‣ So we can identify and execute each pivot in O(log n)
amortized time.

[Tarjan Werneck 2005]

[Sleator Tarjan 1983]···

Planar MSSP summary

‣We can (implicitly) compute distances from every boundary
vertex to every vertex in any planar map in O(n log n) time!

‣More accurately: Given k vertex pairs, where one vertex of
each pair is on the boundary, we can compute those k
shortest-path distances in O(n log n + k log n) time.

[Klein 2005]

Higher-genus MSSP

‣ Let Σ be any surface map with genus g. Fix a face f of Σ.

‣We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.

Higher-genus MSSP

‣ Let Σ be any surface map with genus g. Fix a face f of Σ.

‣We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.

Higher-genus MSSP

‣ Let Σ be any surface map with genus g. Fix a face f of Σ.

‣We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.

Higher-genus MSSP

‣ Let Σ be any surface map with genus g. Fix a face f of Σ.

‣We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.

Higher-genus MSSP

‣ Let Σ be any surface map with genus g. Fix a face f of Σ.

‣We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.

Same strategy!

‣Move a point s continously around f, maintaining both the
shortest-path tree rooted at s and the complementary
slacks. Whenever a non-tree edge becomes tense, relax it.

Same strategy!

‣Move a point s continously around f, maintaining both the
shortest-path tree rooted at s and the complementary
slacks. Whenever a non-tree edge becomes tense, relax it.

Complementary grove

‣ The dual cut graph X* = (G\T)* is no longer a spanning tree!

‣ Grove decomposition: partition X* into 6g subtrees of G*.
▹ Each subtree contains one dual cut path and all attached “hair”
▹ Maintain each subtree in its own dynamic forest data structure

Where are the pivots?

‣ All active edges are dual to edges in some dual cut path.

‣We can find and execute each pivot using O(g) dynamic
forest operations = O(g log n) amortized time.

How many pivots?

‣ Each directed edge pivots into T at most 4g times.
▹ 4g = max # disjoint non-homotopic paths between two points in Σ
▹ = # edges in a system of quads!

‣ So the total number of pivots is O(gn)

Summary

‣ Given any surface map Σ with complexity n and genus g,
with non-negatively weighted edges, and a face f.

‣We can (implicitly) compute shortest-path distances from
every vertex of f to every vertex of Σ...

▹ in O(gn log n) time with high probability

▹ or in O(min{g, log n} · gn log n) worst-case deterministic time

[Cabello Chambers Erickson 2013]
[Fox Erickson Lkhamsuren 2018]

Picky details

‣ Everything so far assumes that shortest paths are unique,
and that at most one edge becomes tense at a time.

‣We can enforce this assumption by perturbing the edge
weights.

▹ Randomized perturbation: O(1) time penalty, but succeeds only with
high probability  
[Mulmuley Vazirani Vazirani 1987]

▹ Lexicographic perturbation: O(log n) time penalty 
[Charnes 1952] [Dantzig Orden Wolfe 1955]

▹ Homologically-least leftmost (“holiest”) perturbation: O(g) time penalty 
[Fox Erickson Lkhamsuren 2018]

[Cabello Chambers Erickson 2013]

Shortest nontrivial cycles, take 2

Faster algorithm

To compute the shortest nonseparating cycle:
▹ Compute a greedy system of cycles γ1, γ2, ..., γ2g

▹ Find the shortest cycle that crosses each greedy cycle γi once

[Cabello Chambers 2007]

Algorithm

‣ To find the shortest cycle that crosses γi once:
▹ Cut the surface open along γi. Resulting surface Σ✂γi has two copies

of γ on its boundary.

▹ Find shortest path in Σ✂γi between two copies of each vertex of γi

▹ MSSP: O(gn log n) time with high probability

[Cabello Chambers 2007]

Algorithm 1

To compute the shortest nonseparating cycle:
▹ Compute a greedy tree-cotree decomposition
▹ Compute a greedy system of cycles γ1, γ2, ..., γ2g

▹ Find the shortest cycle that crosses each greedy cycle γi once

‣ O(g2 n log n) time with high probability

‣ This is the fastest algorithm known in terms of both n and g.

[Cabello Chambers Erickson 2013]

One-cross lemmas

‣ Let γ* be the shortest noncontractible cycle, and let ℓ be the
shortest noncontractible loop at an arbitrary basepoint.

‣ Then γ* and ℓ cross at most once.

[Cabello Chambers 2007]

One-cross lemmas

‣ Let γ* be the shortest noncontractible cycle, and let π be a
shortest nonseparating path between two boundary points.

‣ Then γ* and π cross at most once.

[Cabello Chambers 2007]

Algorithm 2

To compute the shortest noncontractible cycle:
▹ Find shortest non-contractible loop ℓ at some basepoint
▹ Find shortest cycle crossing ℓ once
▹ Cut the surface along ℓ
▹ While the surface is not a disk:

• Find shortest non-separating boundary to boundary path π
• Find shortest cycle crossing π once
• Cut the surface along π

‣ O(g2 n log n) time with high probability

‣ This is the fastest algorithm known in terms of both n and g.

[Cabello Chambers Erickson 2013]

Thank you!

[Free Gruchy (“Slow-Mo Guys”) 2018]

Thank you!

[Free Gruchy (“Slow-Mo Guys”) 2018]

Continuous surfaces
or “Why not solve the real problem?”

Structural results generalize...

‣ The 3-path and 1-crossing conditions still hold

‣ The shortest non-trivial cycle still contains shortest paths
between any pair of antipodal points

‣ The greedy system of loops is still optimal

‣ Every cycle in a greedy system of cycles contains shortest
paths between any two antipodal points

‣ The continuous analogue of the  
greedy cut graph is a cut locus

...but what about algorithms?

‣ All algorithms ultimately rely on computing shortest paths.

‣ So we must be given a surface representation that supports
computing shortest paths!

Flat tori in three-dimensional space and convex
integration
Vincent Borrelli ⇤, Saı̈d Jabrane ⇤ , Francis Lazarus †, and Boris Thibert ‡

⇤Institut Camille Jordan, Université Lyon I, Villeurbanne, France,†CNRS, GIPSA-Lab, Université de Grenoble, France, and ‡Laboratoire Jean Kuntzmann, Université
de Grenoble, France

Submitted to Proceedings of the National Academy of Sciences of the United States of America

It is well-known that the curvature tensor is an isometric invari-
ant of C2 Riemannian manifolds. This invariant is at the origin of
the rigidity observed in Riemannian geometry. In the mid 1950s,
Nash amazed the world mathematical community by showing that
this rigidity breaks down in regularity C1. This unexpected flex-
ibility has many paradoxical consequences: one of them is the
existence of C1 isometric embeddings of flat tori into Euclidean
three-dimensional space. In the 70-80’s, M. Gromov, revisiting
Nash’s results introduced the Convex Integration Theory offering
a general framework to solve this type of geometric problems.
In this research announcement, we convert the Convex Integra-
tion Theory into an algorithm that produces isometric maps of
flat tori. We provide the first implementation of a convex inte-
gration process leading to the first images of an embedding of
a flat torus. The resulting surface reveals a C1 fractal structure:
while the tangent plane is defined everywhere, the normal vec-
tor exhibits a fractal behaviour. Isometric embeddings of flat tori
may thus appear as a first geometric occurrence of a structure
which is simultaneously C1 and fractal. Beyond these results,
our first implementation demonstrates that Convex Integration, a
theory still confined to specialists, can produce computationally
tractable solutions of partial differential relations.

isometric embedding | convex integration | partial differential systems

A geometric torus is a surface of revolution generated by revolv-
ing a circle in three dimensional space about an axis coplanar

with the circle. The standard parametrization of a geometric torus
maps horizontal and vertical lines of a unit square to latitudes and
meridians of the image surface. This unit square can also be seen as
a torus; the top line is abstractly identified with the bottom line and
so are the left and right sides. Because of its local Euclidean geome-
try, it is called a square flat torus. The standard parametrization now
appears as a map from a square flat torus into the three-dimensional
space with image a geometric torus. Although natural, this map dis-
torts the distances: the lengths of latitudes vary while the lengths of
the corresponding horizontal lines on the square remain constant.

It was a long-held belief that this defect could not be fixed. In
other words, it was presumed that no isometric embedding of the
square flat torus – a differentiable injective map that preserves dis-
tances – could exist into three-dimensional space. In the mid 1950s,
Nash [1] and Kuiper [2] amazed the world mathematical commu-
nity by showing that such an embedding actually exists. However,
their proof relies on an intricated construction that makes it difficult
to analyse the properties of the isometric embedding. In particular,
these atypical embeddings have never been visualized. One strong
motivation for such a visualization is the unusual regularity of the em-
bedding: a continuously differentiable map that cannot be enhanced
to be twice continuously differentiable. As a consequence, the im-
age surface is smooth enough to have a tangent plane everywhere but
not sufficiently to admit extrinsic curvatures. In particular, the Theo-
rema Egregium, one of the major tool of differential geometry, breaks
down on such a paradoxical surface.

In the 70-80’s, Gromov, revisiting the results of Nash and oth-
ers such as Phillips, Smale or Hirsch, extracted the underlying no-
tion of their works: the h-principle [3, 4]. This principle states that
many partial differential relation problems reduce to purely topolog-
ical questions. The raison d’être of this counterintuitive phenomenon

was later brought to light by Eliashberg and Mishachev [5]. In or-
der to prove that the h-principle holds in many situations, Gromov
introduced several powerful methods for solving partial differential
relations. One of which, the Convex Integration Theory [5, 6, 7],
provides a quasi-constructive way to build sequences of embeddings
converging towards isometric embeddings. Nevertheless, because of
its broad purpose, this theory remains far too generic to allow for a
precise description of the resulting map.

In this article, we convert the Convex Integration Theory into an
explicit algorithm. We then provide an implementation leading to the
first images of an embedded square flat torus in three dimensional
space. This visualization has led us in turn to discover a new geomet-
ric structure. This structure, described in the Corrugation Theorem
below, reveals a remarkable property: the normal vector exhibits a
fractal behaviour.

Fig. 1. The first four corrugations

General strategy
The general strategy [1] starts with a strictly short embedding, i.e.,
an embedding of the square torus that strictly shrinks distances. In
order to build an isometric embedding, this initial map is "corru-
gated" along the meridians in the purpose of increasing their length
(see Fig. 1). This corrugation is performed while keeping a strictly

Reserved for Publication Footnotes

www.pnas.org/cgi/doi/10.1073/pnas.0709640104 PNAS Issue Date Volume Issue Number 1–7

[Borelli Jabrane Lazarus Rohmer Thibert 2012]

Piecewise-linear surfaces

‣ Complex of Euclidean polygons with pairs of equal-length
edges identified (glued)

Piecewise-linear surfaces

‣Metric is Euclidean everywhere except at vertices

‣ Paths and cycles can be anywhere on the surface

PL shortest paths

‣ “Continuous Dijkstra”
▹ O(n2 log n) time [Mitchell Mount Papadimitriou 1987]
▹ O(n2) [Chen Han 1990]

‣ This lets us compute shortest nontrivial
cycles in O(n3) time.

‣ Lots of approximation algorithms, faster special
cases, practical heuristics, and false starts
▹ Practical implementation [Surazhsky Surazhsky

Kirsanov Gortler Hoppe 2005]

▹ Heat equation [Crane Weischedel Wardetzky 2013]

Geodesics in Heat

Keenan Crane
Caltech

Clarisse Weischedel
Universität Göttingen

Max Wardetzky
Universität Göttingen

Abstract

We introduce the heat method for computing the shortest geodesic
distance to an arbitrary subset of a given domain. The heat method is
robust, efficient, and simple to implement since it is based on solving
a pair of standard linear elliptic problems. The resulting algorithm
represents a significant breakthrough in the practical computation
of distance on a wide variety of geometric domains, since these
problems can be prefactored once and subsequently solved in linear
time. In practice, distance can be updated via the heat method an
order of magnitude faster than with state-of-the-art methods while
maintaining a comparable level of accuracy. We demonstrate that
the method converges to the exact geodesic distance in the limit of
refinement; we also explore smoothed approximations of distance
suitable for applications where differentiability is required.

Keywords: digital geometry processing, discrete differential ge-
ometry, geodesic distance, distance transform, heat kernel

Links:

1 Introduction

Imagine touching a scorching hot needle to a single point on a
surface. Over time heat spreads out over the rest of the domain
and can be described by a function kt,x(y) called the heat kernel,
which measures the heat transfered from a source x to a destination
y after time t. A well-known relationship between heat and distance
is given by Varadhan’s formula [1967]

d
2(x, y) = lim

t!0
�4t log kt,x(y),

which says that the geodesic distance d between any pair of points
x, y on a Riemannian manifold can be recovered from the solution
to a short-time heat flow. The intuition behind this behavior stems
from the fact that heat diffusion can be modeled as a large collection
of hot particles taking random walks starting at x. Any particle that
manages to reach a distant point y in a small time t will have had lit-
tle time to deviate from the shortest possible path. To date, however,
this relationship has not been exploited by numerical algorithms that
compute geodesic distance.

Why has Varadhan’s formula been overlooked in this context? One
possibility is that for large values of t the function �4t log kt,x is a
poor approximation of geodesic distance, yet for small values of t
the heat kernel is numerically inaccurate due to rapid exponential
decay. A key insight of our method is that even for moderately large
values of t, the gradient of the heat kernel continues to point very
close to the correct direction, i.e., along geodesic curves. We can
therefore separate the computation of distance into two separate

Figure 1: Geodesic distance on the Stanford Bunny computed using
the heat method.

stages: first compute the gradient of the distance function via the
heat kernel, then recover the distance function itself via Helmholtz-
Hodge decomposition.

With respect to existing algorithms, the heat method offers two ma-
jor advantages. First, it can easily be formulated for any space that
admits a Laplace–Beltrami operator. As a consequence, our method
can be applied to virtually any type of geometric discretization, in-
cluding regular and irregular grids, polygonal meshes, and even
unstructured point clouds. Second, our approach involves only the
solution of sparse linear systems. As a result, problems where we
want to compute the distance to a large number of different sets
benefit enormously since linear systems can be prefactored once and
subsequently inverted in linear time. This feature makes the heat
method particularly promising for applications such as shape match-
ing, path planning, and level set-based simulation (e.g., free-surface
fluid flows), all of which require repeated distance queries on a
fixed geometric domain. Moreover, because Poisson-type equations
are widespread in scientific computing, the heat method can im-
mediately take advantage of new developments in numerical linear
algebra and parallelization.

2 Related Work

The prevailing approach to distance computation is to solve the
eikonal equation

|r�| = 1 (1)
subject to boundary conditions �|� = 0 over some subset � of the
domain. This formulation is nonlinear and hyperbolic, making it
difficult to solve directly. In practice, Eq. (1) is often solved by
applying an iterative relaxation scheme such as Gauss-Seidel – spe-
cial update orders are known under the names fast marching and
fast sweeping, which are some of the most popular algorithms for
distance computation on regular grids [Sethian 1996] and triangu-
lated surfaces [Kimmel and Sethian 1998]. Fast marching and fast
sweeping have asymptotic complexity of O(n log n) and O(n), re-
spectively, but sweeping is often significantly slower due to the large

ar
X

iv
:1

20
4.

62
16

v1
 [

cs
.G

R
]

24
 A

pr
 2

01
2

The length of this path defines a tighter upper-bound distance
Ust(backtrace).
Step 4: Start our exact search (Section 3) from vs until vt is
reached, which computes exact distance D(vs, ·). During the
search, we again use the inequality (5.1) to propagate only windows
that have at least one point p satisfying

Ds(p) + Lt(p) ≤ Ust(backtrace).

Step 5: The geodesic distance between vs and vt has now been
computed asDst =Ds(vt). To obtain the geodesic path vt back to
vs, apply backtracing (Section 3.5) using the windows provided by
the previous step.
As future work, it would be useful to obtain even tighter A* bounds
by precomputing distances to a set of landmark points on the mesh,
as explored in [Goldberg and Harrelson 2005] for graph search.

6 Experimental results
We tested the algorithms on a Pentium M 1.6GHz PC with 1GB
RAM. As shown in Table 1, our exact algorithm is useful even
for large models. For instance, the exact geodesic distance from a
source point to all vertices of the 400K-triangle Davidmodel is com-
puted in 75seconds. By comparison, the implementation of Chen
and Han [1996] by Kaneva and O’Rourke [2000] runs successfully
only on the 30K-triangle Buddha S model from our dataset, with a
computation time of over 28 hours. In practice the main bottleneck
of our exact algorithm is the memory space required to store all the
windows. For 1GB memory, we are able to process a mesh of up
to 700K faces. This space complexity constraint provides strong
motivation for our approximate algorithm.
With a 0.1% relative error bound, our approximate geodesic algo-
rithm runs significantly faster and uses much less memory than the
exact algorithm. Table 1 reports both (1) the maximal absolute
difference |D(v) − D(v)| between the approximate and exact dis-
tances, and (2) the average relative difference |D(v)−D(v)|/D(v).
Absolute errors are reported as percentages of the object diameter.
We compare the accuracy of our approximate algorithm with the
fast marching (FM) algorithm of [Kimmel and Sethian 1998].
Specifically, we used the FM implementation of Peyré and Co-
hen [2003; 2005], and verified that two other recent FM implemen-
tations [Reimers 2004; Sifri et al. 2003] produced identical distance
results and had similar speed. Table 1 shows that our approxima-
tion algorithm has similar running times to the FM algorithm, but
more importantly it has significantly better accuracy. The error dis-
tribution graph of Figure 11 shows that our algorithm also has much
better accuracy than the improved update rule of [Kirsanov 2004].
Path results Figure 10 shows our point-to-point exact shortest
path algorithm of Section 5 applied to a 1M-triangle Buddha XL
model. It takes about 4seconds to compute the path crossing half
the model. Shortest paths between relatively closer vertices can be
computed at interactive rates. For small models, paths between two
arbitrary vertices can be computed in a matter of milliseconds.

Exact Aprroximate (0.1% rel) Fast marching
Model Faces time WPE time WPE max abs ave rel time max abs ave rel
Rockerarm 80,354 18.24 19.74 1.92 1.32 0.06% 0.04% 3.35 0.63% 0.84%
Horse 96,956 18.43 18.41 2.44 1.40 0.08% 0.05% 3.45 1.44% 0.75%
Dragon 100,000 6.45 7.18 3.53 1.85 0.09% 0.07% 5.81 1.09% 1.20%
Buddha S 30,000 1.03 4.57 0.97 1.95 0.14% 0.08% 1.23 2.15% 2.59%
Buddha M 199,272 24.43 11.83 6.17 1.57 0.08% 0.06% 11.03 0.56% 0.79%
David 399,710 75.13 16.72 11.13 1.48 0.11% 0.05% 18.15 0.49% 0.55%
Fandisk S 1,000 0.05 6.77 0.03 2.07 0.74% 0.07% 0.04 10.03% 5.09%
Fandisk U 9,926 0.78 10.72 0.14 1.01 0.05% 0.03% 0.21 1.21% 1.41%

Table 1: Comparison of our exact and approximation algorithms with
fast-marching for the models of Figure 9. Times are in seconds; WPE
indicates average number of windows per edge.

Horse Dragon

David Buddha M

Fandisk Rockerarm

Fandisk S Fandisk U
Figure 9: Models used for the tests in Table 1.

Hidden assumptions

‣ Exact algorithms require exact real arithmetic
▹ Ugly theoretical quagmire, but not a significant issue “in practice”

‣ Analysis assumes that every shortest path crosses each
edge of the given PL structure at most once.
▹ True for piecewise-flat maps into any Rd.
▹ True (or close enough) for PL triangulations with fat triangles
▹ True for some PL structure of every PL surface. 

[Zalgaller 1958] [Burago Zalgaller 1995] [Bern Hayes 2011]

▹ But not true for arbitrary PL structures!

Toilet paper tube [Alexandrov 1942]
[Zalgaller 1997]

Square (sic) flat torus

(0,0)

(Fn , Fn–1)

(Fn+1 , Fn)

(Fn+2 , Fn+1)

[Borelli Jabrane Lazarus
Rohmer Thibert 2012]

Unbounded time

‣ Let α = maximum aspect ratio of any triangular facet.

‣ Good news:
▹ Any shortest path crosses each edge O(α) times (and this is tight).
▹ So we can find the shortest nontrivial cycles in O(poly(n, α)) time!

‣ Bad news:
▹ If edge lengths or local coordinates are integers, then α can be

exponential in the input size (# vertices + # edges + # bits).

▹ If edge lengths or local coordinates are real numbers, then α is 
not bounded by any function of the input size (# vertices + # edges).

Normal coordinates to the rescue?

‣We can implicitly represent any simple cycle or arc using 
O(n log X) bits, where X = # crossings.  
[Kneser 1930]

‣ Several algorithms for normal curves:
▹ Counting and isolating components
▹ Counting isotopy classes
▹ Intersection numbers
▹ Image of one curve under a mapping class
▹ Distance between two curves in the curve complex
▹ Classifying mapping classes

3
5

4

[Schaefer, Sedgwick, Štefankovic 2003] [Agol Hass Thurston 2006]  
[Erickson Nayyeri 2013] [Bell Webb 2016]

Normal coordinates to the rescue?

‣We can “trace” any simple geodesic through a PL
triangulation in O(n2 log X) time.  
[Erickson Nayyeri 2013]10 Jeff Erickson and Amir Nayyeri

1

1

0

0

0

0

0

0

0
0 0

3 0

3

31

2

1
3

0

10

0

3

2
5

5

0

5
2

2
0

0

0

00

1

1

1

2
3

0
5

5

5
0

0

0

3

5

2

2

3

3

3

0

0

Fig. 3 Corner and edge coordinates of a normal curve with two components in a triangulated disk.

Proof Fix a reduced normal curve g on a triangulation T with n triangles and v vertices;
obviously, v � 1. Consider the non-reduced normal curve g 0 obtained from g by
adding v trivial cycles and arcs, one around each vertex of T . Orient each component
of g 0 arbitrarily, and consider the faces of Tkg 0 immediately to the left of some
nontrivial component gi. Because gi is nontrivial, none of these faces is a triangular
block. If all of these faces were quadrilateral blocks, the component just to the left of gi
would be normal-isotopic to gi, contradicting our assumption that g is reduced. Thus,
at least one face on the left side of gi is a junction; symmetrically, at least one face on
the right side of gi is a junction. Similarly, each trivial component of g 0 is incident to at
least one junction. The overlay graph Tkg 0 has exactly n junctions, each incident to at
most three components of g 0. We conclude that g 0 has at most b(3n� v)/2c non-trivial
components.

We call a port redundant if it separates two blocks; because each face of T
contains exactly one junction, each edge of T contains at most two non-redundant
ports. Removing all the redundant ports from the overlay graph Tkg merges contiguous
sets of blocks into streets. Each street is either a single open disk with exactly two
non-redundant ports on its boundary (called the ends of the street), an open annulus
bounded by a trivial component of g and a vertex of T , or an annulus bounded by two
parallel components of g . In particular, if g is reduced, all streets are of the first type.
For any reduced normal curve g , the street complex S(T,g) is the complex of streets
and junctions in the overlay Tkg . Fig. 4 shows the street complex of the normal curve
in Fig. 3. Streets and junctions are two-dimensional analogues of the product regions
and guts of normal surfaces, defined by Jaco, Letscher, and Rubinstein [35, 36].

By construction, the components of any reduced normal curve g appear as disjoint
paths and cycles in the 1-skeleton of the street complex. Although the complexity of
the overlay graph Tkg can be arbitrarily large, even when the curve g is connected,

Tracing Compressed Curves in Triangulated Surfaces 11

Fig. 4 The street complex of the normal curve in Fig. 3. Unshaded faces are junctions; shaded faces are
streets; one street is shaded darker (green) for emphasis.

the street complex S(T,g) of a reduced normal curve is never more than a constant
factor more complex than the original triangulation.

Lemma 2.3 Let T be a surface triangulation with n triangles. For any reduced normal
curve g in T , the street complex S(T,g) has complexity O(n).

Proof The triangulation T trivially has at most 3n vertices and at most 3n edges.
Each interior edge of T contains at most two non-redundant ports, so S(T,g) has O(n)
interior vertices. Each boundary vertex of S(T,g) is either a boundary vertex of T or an
endpoint of one of the O(n) components of g , so S(T,g) has O(n) boundary vertices.
Each vertex of S(T,g) is either a vertex of T or has degree at most 4, so S(T,g) has
O(n) edges. Each non-redundant port is an end of at most one street, so S(T,g) has
O(n) streets. Finally, S(T,g) has exactly n junctions, one in each triangle of T .

Our restriction to reduced curves has two motivations. First, the street complex
of any non-reduced curve g contains annular faces, which would complicate our
algorithms (but probably not seriously). More importantly, the street complex of a
non-reduced curve can have arbitrarily high complexity, since the curve can have
arbitrarily many components. Fortunately, as we argue in Section 6, it is easy to avoid
tracing trivial components or more than one component in the same normal isotopy
class.

The crossing sequence of a street is the sequence of edges in the original triangu-
lation T crossed by any path that traverses the street from one end to the other. The
crossing length of a street is the length of its crossing sequence, or equivalently, the
number of constituent blocks plus one. To simplify our analysis, we regard any port
between two junctions, as well as any boundary port incident to a junction, as a street
with crossing length 1. The sum of the crossing lengths of the streets in any street
complex S(T,g) is the total crossing number of g plus the number of edges in T .

Any normal curve g 0 that is disjoint from g subdivides each port in S(T,g) into
smaller ports, each street in S(T,g) into narrower “blocks”, and each junction in S(T,g)
into blocks and exactly one smaller junction. Removing all redundant ports from this
refinement gives us the refined street complex S(T,g [g 0). Conversely, the intersection
of g 0 with any street or junction in S(T,g) is a set of elementary arcs. There are three
types of elementary arcs within any junction, each connecting two of the junction’s

Normal coordinates to the rescue?

‣We can compute a minimal (abstract) triangulation for a
given normal curve in O(poly(n log X)) time.  
[Bell 2016] [Bell Webb 2016]

Similar results are also known for other measures of the complexity of � [8][7,
Page 39]. We may use Lemma 2.2 repeatedly to monotonically reduce ◆(�, T)
until we reach a �–simple triangulation and so deduce:

Corollary 2.3. For each T 2 G and curve � there is a �–simple triangulation
T 0 2 G such that d(T , T 0) 2 O(◆(�, T)).

Unfortunately there are cases in which at least ◆(�, T) flips are required in
order to obtain a �–simple triangulation. For example, on the triangulation of
the once punctured torus shown in Figure 2 the curve of slope k has geometric
intersection number ⇡ k while the nearest �–simple triangulation is ⇡ k away.

k

Figure 2: This triangulation is far from a �–simple one in G.

Such examples arise by performing large powers of Dehn twists. In the next
section we will show that in fact these twists are the only way to create such an
obstruction.

3 Twists

To deal with triangulations which need a large number of flips in order to simplify
them we introduce a second type of move: the Dehn twist T k

� [5, Chapter 3]. This
move cuts the surface open along the curve � and rotates one of the boundary
components k times to the right (or |k| times to the left if k is negative) before
regluing the boundary components together. We will show that if flips cannot
decrease ◆(�, T) by a definite fraction then a power of a Dehn twist can.

To do this, suppose that T is a fixed triangulation. Suppose that � is a fixed
curve and assume that flipping any edge of T reduces ◆(�, T) by at most m. Fix
emax to be an edge of T which meets � the most, that is, such that

E := ◆(�, emax) � ◆(�, e)

for every edge e of T . Additionally fix a coorientation emax, that is, a choice of
unit normal vector field to emax.

Abusing notation slightly, let us think of � as a representative of its isotopy
class which is in minimal position with respect to T . Let P := � \ T .

3.1 Insulation

Definition 3.1. Suppose that p 2 P lies on the edge e of T . Then p is k–
insulated if each component of e� p contains at least k other points in P . That

3

sisi
c

⌧i

sjsj

⌧j = T
k
c (⌧i)

Twist

Figure 6: Twisting to accelerate through a (left) unwinding.

we can apply to ⌧i so that it still carries b. This power is simply bm/wc where
w is the weight on the branch of ⌧i merging into c and m is the minimal ratio
between the weight on a branch along c and the number of times that c runs
over it [21, Section 3.2]. See Figure 6. Thus we jump directly from (⌧i, si) to
(⌧j , sj) where, potentially, j � i.

This gives us a subsequence (⌧i1 , si1), . . . , (⌧im , sim). Erickson and Nayy-
eri showed that this subsequence contains only O(||b||) curves [21, Section 4].
However, in the corresponding subsequence of short curves ci1 , . . . , cim , the
potentially large jumps actually still do not move us far in C(S):

Proposition 2.9. Consecutive terms in our subsequence are at most distance

T + 6 apart in C(S).

Proof. Suppose that we jump from ⌧i to ⌧j = T
k
c (⌧i). The curve c meets ⌧i

at most once. Hence, as ci 2 short(⌧i) runs over each branch at most twice,
◆(ci, c) 2 and so dC(S)(ci, c) 3. Therefore

dC(S)(ci, T
k
c (ci)) dC(S)(ci, c) + dC(S)(c, T

k
c (ci))

= dC(S)(ci, c) + dC(S)(T
k
c (c), T

k
c (ci))

= 2dC(S)(ci, c)

 6

Now T
k
c (ci) 2 short(⌧j) and diam(short(⌧j)) T by Proposition 2.5. Hence

dC(S)(ci, cj) T + 6.

As before dC(S)(ci, ci+1) T . Hence the distance between consecutive curves
in this subsequence is bounded above by T + 6.

Therefore once again by Theorem 2.8, we have that the {ci1 , . . . , cim} is a
quasiconvex subset of C(S) which contains b. Furthermore, since we only jump
forwards after performing 6⇣ splits with the same sign in a row we have that
ci1 = c1 and cim = cn. Hence this subset contains b.

Finally, for ease of notation let ci0 = c0 := a. Now although c0 may not
be in short(⌧1) we still have that c0, c1 2 short(T0). It follows from this that
◆(c0, c1) 4⇣ and so dC(S)(c0, c1) T by Proposition 2.5.

The curve graph is �–hyperbolic [38, Theorem 1.1], that is, all triangles are
�–slim. In fact � is a universal constant and has been explicitly bounded [3,
Theorem 1.1] [15, Theorem 1.1] [19, Corollary 7.1] [31, Theorem 1.1]. Hence if
we add a single point to a quasiconvex subset of C(S) then the resulting subset
is also quasiconvex.

9

The bit-size of each of the above integer linear programming problems is at
most log(◆(�, T)). Therefore by using the algorithm of Theorem 2.5 we can solve
each of these problems in at most O(poly(log(◆(�, T)))) operations.

Finally, note that ◆(I, b) from the proof of Proposition 2.4 is a piecewise
linear function with 5 pieces. Therefore the number of intersections occurring
in a triangle is a piecewise linear function with at most 53 pieces. Thus f has
at most 52⇣ pieces and so there are at most 52⇣ 2 O(1) such problems we must
consider. Hence we can also find the minimal solution over all problems, and so
a minimum of f , in polynomial time in the bit-size of T (�).

Corollary 2.6. Suppose we are given T (↵) and T (�) where T is an ↵–minimal
triangulation. Then we can compute the minimal position for ↵ relative to �,
and so ◆(↵,�), in polynomial time in the bit-size of T (�).

Remark 2.7. We may also view � as a measured lamination. Then minimal
position occurs when there are no bigons between ↵ and the underlying lamination
of �. Thus we can find the minimal position of ↵ with respect to � by solving a
collection of linear programming problems instead of integer linear programming
problems.

3 Flips and twists

We now consider the more general case, in which ↵ and � are given on a
triangulation T which is not ↵–minimal. To deal with this case, we introduce
two basic moves for modifying triangulations; the flip and the twist. We use
these moves to give a polynomial time reduction back to the case in Section 2.

Firstly, we say that an edge of T is flippable if it is contained in two distinct
triangles. If e is such an edge then we may flip it to obtain a new triangulation
T 0 as shown in Figure 5.

e f

a

b

c

d

Flip

Figure 5: Flipping an edge of a triangulation.

Secondly, if � is a curve on S then we may modify T by performing the Dehn
twist T

k
� [7, Chapter 3]. This move cuts the surface open along the curve � and

rotates one of the boundary components k times to the right (or |k| times to the
left if k is negative) before regluing the boundary components together.

In both cases it is straightforward to compute the edge vectors of ↵ and �

on the new triangulation after performing such a move:

6

Open problems

‣ Can we compute (the normal coordinates of) the shortest
nontrivial cycle in an arbitrary triangulated PL surface in
O(poly(n log α)) time?

Open problems

‣ Can we compute (the normal coordinates of) the shortest
nontrivial cycle in an arbitrary triangulated PL surface in
O(poly(n log α)) time?

‣More generally, can we compute a useful PL triangulation
(for example, the intrinsic Delaunay triangulation) of an
arbitrary triangulated PL surface in O(poly(n log α)) time?

Thank you!

[Segerman 2015]

