One-Dimensional Computational Topology
III. Shortest nontrivial cycles

Jeff Erickson

University of lllinois, Urbana-Champaign

Today’s Question

Given a surface 2, find the shortest
topologically nontrivial cycle in 2.

Trivial cycles

» contractible = null-homotopic = boundary of a disk

» separating = null-homologous = boundary of a subsurface

nonseparating separating separating
noncontractible noncontractible contractible

Surface reconstruction

Surface reconstruction

Scan
object
point cloud

Surface reconstruction

scan
object
point cloud
reconstruct
surface

Topological noise

» Measurement errors from the scanning device add extra
handles/tunnels to the reconstructed surface.

[Wood, Hoppe, Desbrun, Schréder ‘04]

Topological noise

» These extra tunnels make compression difficult.

_—

genus 104

50K vertices 50K vertices

[Wood, Hoppe, Desbrun, Schréder ‘04]

Connections

» Length of shortest noncontractible cycle

> systole [Loewner ‘49] [Pu '52] ... [Gromov 83] ...
> representativity [Robertson, Seymour 87]
> edge-width [Thomassen 90; Mohar, Thomassen 99]

» First step of many other topological graph algorithms

» Related to broader problems in topological data analysis
> Coverage analysis of ad-hoc/sensor networks

> Identifying (un)important topological features in high-dimensional
data sets

“Given”?

» Input:
> Orientable surface map % with complexity n and genus g.

> Length 2(e)=0 for every edge of X
+ No other assumptions. Not even the triangle inequality.

“Given”?

» Input:
> Orientable surface map % with complexity n and genus g.

> Length 2(e)=0 for every edge of X
+ No other assumptions. Not even the triangle inequality.

» Output:

> Minimum-length cycle in the graph of > that is noncontractible or
nonseparating in 2.

SyStOI iC i n eq ua I ities [Colin de Verdiére, Hubard, de Mesmay 2013]

» Any Riemannian surface can be approximated (up to constant
factors) by a combinatorial triangulation, and vice versa.
> discrete—continuous: glue equilateral triangles, smooth vertices
> continuous—discrete: intrinsic Voronoi diagram of €-net

» Every Riemannian surface has systole <£4/A/glog g
[Gromov 1983, 1992]

= Every triangulated surface map has edgewidth<2+/n/glogg

Improves [Hutchinson 1988]

» There are Riemannian surfaces with systole > %\/ /glogg
[Buser Sarnak 1994]

1
= There are triangulated surface maps with edgewidth == +/n/glogg
Conjectured by [Przytycka Przytycki 1993]

Tree-cotree structures

Tree-cotree decomposition

A partition of the edges into three disjoint subsets:

» A spanning tree T
» A spanning cotree C — C* is a spanning tree of G*
» Leftover edges L := E\ (CuT) — Euler’s formula implies |L| = 2g

VA v VAV
Qﬁﬁﬁﬁ?}m‘
N e
LS AEY
\SavASAVan I

[von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

Tree-cotree decomposition

A partition of the edges into three disjoint subsets:

» A spanning tree T
» A spanning cotree C — C* is a spanning tree of G*
» Leftover edges L := E\ (CuT) — Euler’s formula implies |L| = 2g

[von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

Tree-cotree decomposition

A partition of the edges into three disjoint subsets:

» A spanning tree T
» A spanning cotree C — C* is a spanning tree of G*
» Leftover edges L := E\ (CuT) — Euler’s formula implies |L| = 2g

[von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

Tree-cotree decomposition

A partition of the edges into three disjoint subsets:

» A spanning tree T
» A spanning cotree C — C* is a spanning tree of G*
» Leftover edges L := E\ (CuT) — Euler’s formula implies |L| = 2g

[von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

Fundamental loops and cycles

» Fix a tree-cotree decomposition (7, L, C) and a basepoint x.

» Nontree edge uv defines a fundamental loop loop(T,uv):
> path from xtou + uv + path from vto x

» Nontree edge uv defines a fundamental cycle cycle(T,uv):

> unique cycle in Tu{uv}
> path from Ica(u,v) to u + uv + path from v to Ica(u,v)

Tree-cotree structures

» System of loops {loop(T, e) | e € L}

> Cutting 2 along these loops leaves a disk
> Basis for the fundamental group (%, x)

Tree-cotree structures

» System of cycles {cycle(T, e) | e € L}
> 2g simple cycles
> Basis for the first homology group H1 (%)

Tree-cotree structures

» Cut graph TUL =2\C

» Remove degree-1 vertices = reduced cut graph

> Minimal subgraph with one face
> Composed of at most 3g cut paths meeting at most 2g branch points

I
et
\!
L d
.
.’
.
o p
. W
’ vy
T 4
1
)
|
Y
.
.
.
~
~-

Tree-cotree structures

» Often useful to build these structures in the dual map >*.

> dual system of loops
> dual cut graph

> dual system of cocycles = basis for first cohomology group H'(Z)

Tree-cotree structures

» Every noncontractible cycle in X crosses every (dual)
reduced cut graph.

» Every nonseparating cycle in > crosses at least one
(co)cycle in every system of (co)cycles.

Shortest nontrivial cycles, take 1

Th ree-path condition [Thomassen 1990]

» Any three paths with the same endpoints define three
cycles.

» If any two of these cycles are trivial, so is the third.

Th ree-path condition [Thomassen 1990]

» The shortest nontrivial cycle consists of two shortest paths
between any pair of antipodal points.

» Otherwise, the actual shortest path would create a shorter
nontrivial cycle.

Greedy tree-cotree decomposition

» Assume edges have lengths ¢(e) = 0

» T = shortest-path tree in 2 with arbitrary source vertex x
> = BFS tree if all lengths =1

» C* = maximum spanning tree of >* where w(e*) = #(loop(T,e))
» Computable in O(n log n) time using textbook algorithms.

> O(n) time if all lengths =1
> O(n) time if g=0(n1-¢) [Henzinger et al. '97]

[Eppstein 2003, Erickson Whittlesey 2005]

Shortest nontrivial loops

» Build greedy tree-cotree decomposition (T, L, C) based at x.
» Build dual cut graph X* = L*uC*

» Reduce X* to get R*

3 ~
. ~
4 -

L4 -
4 A}
’

[1
L} 1
1]
1 L]
|| [
\¥ '
A) 24
A L4
A L4
~ ’
.~ -

[Erickson Har-Peled 2005]

Shortest nontrivial loops

» 3-path condition = We want loop(T, e) for some e¢T
» loop(T, e) is noncontractible iff e*eR*

» loop(T, e) is nonseparating iff e*eR* and R*\e* is connected

[Erickson Har-Peled 2005]
[Cabello, Colin de Verdiére, Lazarus 2010]

Shortest nontrivial loops

» 3-path condition = We want loop(T, e) for some e¢T
» loop(T, e) is noncontractible iff e*eR*

» loop(T, e) is nonseparating iff R*\e* is connected

L d
’
L4
L4
4
4
[
T
1
1
)
A
A 1
- L4
-
~ "
N - o
L4

[Erickson Har-Peled 2005]
[Cabello, Colin de Verdiére, Lazarus 2010]

Shortest non-trivial cycle [Erickson Har-Peled 2005]

» For each basepoint: O(n log n) time.

» Try all possible basepoints: O(n? log n) time.

Shortest non-trivial cycle [Erickson Har-Peled 2005]

» For each basepoint: O(n log n) time.

» Try all possible basepoints: O(n? log n) time.

» This is the fastest algorithm known.

> Significant improvement would also improve the best time to

compute the girth of a sparse graph: O(n2) = BFS at each vertex
[Itai Rodeh 1978]

> Computing the girth of a dense graph is at least as hard as all-pairs

shortest paths and boolean matrix multiplication.
[Vassilevska Williams, Williams 2010]

One-cross lemmas

» The shortest nontrivial cycle crosses any shortest path at
most once

» Otherwise, we could find a shorter nontrivial cycle!

.
A}
1
1

One-cross lemmas [Cabello Mojar 2005]

» Let y* be the shortest nonseparating cycle, and let y be any
cycle in a greedy system of cycles.

» Then y* and y cross at most once.

> >

FaSteI‘ algorithm [Cabello Chambers 2007]

To compute the shortest nonseparating cycle:
> Compute a greedy system of cycles y1, v2, ..., V2g
> Find the shortest cycle that crosses each greedy cycle y; once

AI gO I‘ith m [Cabello Chambers 2007]

» To find the shortest cycle that crosses y; once:

> Cut the surface open along y;. Resulting surface ¥s<y; has two copies
of y on its boundary.

> Find the shortest path in Z=<y; between the clones of each vertex of y;

)

Multiple-Source Shortest Paths

PN

[Free Gruchy (“Slow-Mo Guys”) 2018]

Multiple-Source Shortest Paths

PN

[Free Gruchy (“Slow-Mo Guys”) 2018]

Multiple-Source Shortest Paths [Klein 2005]

» Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.

NSO T~<TSA S
s)»!%‘j

P -

NN

Multiple-Source Shortest Paths [Klein 2005]

» Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.

Afi | ""i‘
N\

A=AV
-
RS

Multiple-Source Shortest Paths [Klein 2005]

» Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.

AN SR
(S50 Ay,
N -
v NNy ey
AVAS VAV

Multiple-Source Shortest Paths [Klein 2005]

» Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.

NSO T~<TSA S
(TR D

O\ X =
CRAREE

Multiple-Source Shortest Paths [Klein 2005]

» Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.

Naive algorithm

» For each boundary vertex s, compute the shortest-path tree
rooted at s in O(n log n) time. [ijkstra 1956]

» The overall algorithm runs in O(n? log n) time.

» But in fact, we can (implicitly) compute all such distances in
just O(g?n log n) time.

Planar MSSP [Klein 2005]

» Let’s start with the simplest possible setting.

» Implicitly compute shortest paths in a plane graph G from
every boundary vertex to every other vertex.

Planar MSSP [Klein 2005]

» Let’s start with the simplest possible setting.

» Implicitly compute shortest paths in a plane graph G from
every boundary vertex to every other vertex.

Planar MSSP [Klein 2005]

» Let’s start with the simplest possible setting.

» Implicitly compute shortest paths in a plane graph G from
every boundary vertex to every other vertex.

Planar MSSP [Klein 2005]

» Let’s start with the simplest possible setting.

» Implicitly compute shortest paths in a plane graph G from
every boundary vertex to every other vertex.

Planar MSSP [Klein 2005]

» Intuitively, we want the shortest-path tree rooted at every
boundary vertex.

Planar MSSP [Klein 2005]

» Intuitively, we want the shortest-path tree rooted at every
boundary vertex.

Planar MSSP [Klein 2005]

» In fact, we only need to compute the first shortest-path tree,
followed by changes from each tree to the next.

ZA\%

Planar MSSP [Klein 2005]

» In fact, we only need to compute the first shortest-path tree,
followed by changes from each tree to the next.

AN

Planar MSSP [Klein 2005]

» In fact, we only need to compute the first shortest-path tree,
followed by changes from each tree to the next.

ZA\%

Planar MSSP [Klein 2005]

» In fact, we only need to compute the first shortest-path tree,
followed by changes from each tree to the next.

AN

The disk-tree lemma

» Let T be any tree embedded on a closed disk. Vertices of T
subdivide the boundary of the disk into intervals.

» Deleting any edge splits T into two subtrees R and B.

» At most two intervals have one end in R and the other in B.

The disk-tree lemma

» Let T be any tree embedded on a closed disk. Vertices of T
subdivide the boundary of the disk into intervals.

» Deleting any edge splits T into two subtrees R and B.

» At most two intervals have one end in R and the other in B.

The disk-tree lemma

» Let T be any tree embedded on a closed disk. Vertices of T
subdivide the boundary of the disk into intervals.

» Deleting any edge splits T into two subtrees R and B.

» At most two intervals have one end in R and the other in B.

Number of pivots

» Each directed edge x—y pivots in at most once.

> Consider the tree of shortest paths ending at y.

Number of pivots

» Each directed edge x—y pivots in at most once.

> Consider the tree of shortest paths ending at y.

Number of pivots

» Each directed edge x—y pivots in at most once.

> Consider the tree of shortest paths ending at y.

X—y pivots in

X—y pivots out

Number of pivots

» So the overall number of pivots is only O(n)!

X—y pivots in

X—y pivots out

Number of pivots

» So the overall number of pivots is only O(n)!

» But how do we find these pivots quickly?

X—y pivots in

X—y pivots out

How shortest paths work [Ford 1956]

» Input:
> Directed graph G = (V, E)
> length #(u—v) for each edge u—v

10
> A source vertex s.

\@/ 3
0 S
12
8 A /
4 3
» Each vertex v maintains two values: 3 O/
0

> dist(v) is the length of some path from stov

A~

> pred(v) is the next-to-last vertex of that path from s to v.

How shortest paths work [Ford 1956]

» Edge u—v is tense iff dist(v) = dist(u) + #(u—-v).

How shortest paths work [Ford 1956]

» Edge u—v is tense iff dist(v) = dist(u) + #(u—-v).

How shortest paths work [Ford 1956]

» Edge u—v is tense iff dist(v) = dist(u) + #(u—-v).

» To relax u—v, set dist(v) = dist(u) + (u—=v) and pred(v) = u

How shortest paths work [Ford 1956]

» Edge u—v is tense iff dist(v) = dist(u) + #(u—-v).

3 . 2

< 1 12

A
0 5

10 12

8 7

4 3
4 3

A~

» To relax u—v, set dist(v) = dist(u) + (u—=v) and pred(v) = u

How shortest paths work [Ford 1956]

» Edge u—v is tense iff dist(v) = dist(u) + #(u—-v).

3 . 2

< 1 12

A
0 5

10 12

8 7

4 3
4 3

A~

» To relax u—v, set dist(v) = dist(u) + (u—=v) and pred(v) = u

How shortest paths work [Ford 1956]

» Edge u—v is tense iff dist(v) = dist(u) + #(u—-v).

3 @\O
\@/ ;
£>@
=

» If no edges are tense, then dist(v) is the length of the
shortest path from s to v, for every vertex v.

BaCk tO MSSP [Cabello Chambers Erickson 2013]

» Maintain the shortest path tree rooted at a point s that is
moving continuously around the outer face.

» Also maintain the slack of each edge u—v:
slack(u—v) := dist(u) + (u—-v) — dist(v)

» Distances and slacks change continuously with s, but in a
controlled manner.

» The shortest path tree is correct as long as slack(u—v)>0
for every edge u-v.

[Doppler 1842]

Distance and slack changes [Fizeau 1846]

» Red: dist growing
» Blue: dist shrinking

» Red—red: slack constant

» Blue—blue: slack constant
» Red—blue: slack growing
» Blue—red: slack shrinking

[Doppler 1842]

Distance and slack changes [Fizeau 1846]

» Red: dist growing
» Blue: dist shrinking

» Red—red: slack constant

» Blue—blue: slack constant
» Red—blue: slack growing
» Blue—red: slack shrinking

> active edges

[von Staudt 1847]

Tree-cotree decomposition e 15

[Dehn 1936]

» Complementary dual
spanning tree C* = (G\T)*

» Red and blue subtrees are
separated by a path in C*

» Active edges are dual to
edges in this path.

[von Staudt 1847]

Tree-cotree decomposition e 15

[Dehn 1936]

» Complementary dual
spanning tree C* = (G\T)*

» Red and blue subtrees are
separated by a path in C*

» Active edges are dual to
edges in this path.

PiVOt [Ford 1956]

» When slack(u—v) becomes 0, relax u-v

Delete pred(v)—-v from T
nsert u—vinto T.

Delete (u—v)* from C*.
nsert (pred(v)-v)* into C*

> Set pred(u) :=v

A VAR VA vV

PiVOt [Ford 1956]

» When slack(u—v) becomes 0, relax u-v

Delete pred(v)—-v from T
nsert u—vinto T.

Delete (u—v)* from C*.
nsert (pred(v)-v)* into C*

> Set pred(u) :=v

A VAR VA vV

PiVOt [Ford 1956]

» When slack(u—v) becomes 0, relax u-v
Delete pred(v)—-v from T \
nsert u—v into T. f\
Delete (u—v)* from C*. O

nsert (pred(v)-v)* into C*

> Set pred(u) :=v j "O\)
O
&\ u)s v /

A VAR VA vV

PiVOt [Ford 1956]

» When slack(u—v) becomes 0, relax u-v

Delete pred(v)—-v from T
nsert u—vinto T.

Delete (u—v)* from C*.
nsert (pred(v)-v)* into C*

> Set pred(u) :=v

A VAR VA vV

Pivot [Ford 1956]

» When slack(u—v) becomes 0, relax u-v

Delete pred(v)—-v from T
nsert u—»vinto .
Delete (u—v)* from C*. O

nsert (pred(v)-v)* into C* DA}
> Set pred(u) :=v MZZ/
O
4

e >
u S

—®

A VAR VA vV

Pivot [Ford 1956]

» When slack(u—v) becomes 0, relax u-v

Delete pred(v)—-v from T
nsert u—vinto T.

Delete (u—v)* from C*.
nsert (pred(v)-v)* into C*

> Set pred(u) :=v

A VAR VA vV

Pivots

» Vertices can only change from red to blue.

» SO any edge that pivots into T staysin T.

Pivots

» Vertices can only change from red to blue.

» SO any edge that pivots into T staysin T.

[Sleator Tarjan 1983]

Fast implementation

[Tarjan Werneck 2005]

» We maintain T and C* in dynamic forest data structures that
support the following operations in O(log n) amortized time:

> Remove and insert edges:
» CuT(uv), LINK(u,v)

Data Structures

> Maintain distances at vertices of T: and Network Algorithms:
* GETNODEVALUE(V), aDDsUBTREE(A, V)

> Maintain slacks at edges of C*:

* GEToARTVALUE(U—V), aDDrATH(A, U, V), mINFATH(U, V)

» So we can identify and execute each pivot in O(log n)
amortized time.

Planar MSSP summary [Klein 2005]

» We can (implicitly) compute distances from every boundary
vertex to every vertex in any planar map in O(n log n) time!

» More accurately: Given k vertex pairs, where one vertex of
each pair is on the boundary, we can compute those k
shortest-path distances in O(n log n + k log n) time.

Higher-genus MSSP

» Let > be any surface map with genus g. Fix a face f of .

» We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.

AR e \VAN~

X
O\ ~7 D
v;‘q,,«@mz

AN

Higher-genus MSSP

» Let > be any surface map with genus g. Fix a face f of .

» We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.

WS I Sk
VAV“\. A‘A‘A’A

A AN

Higher-genus MSSP

» Let > be any surface map with genus g. Fix a face f of .

» We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.

Vv wa VAR
ST
O\ KoK
YK
NVAZASVIAVAY N

i

Higher-genus MSSP

» Let > be any surface map with genus g. Fix a face f of .

» We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.

S\ ""
\ =T v
v%’&‘%‘

AN

Higher-genus MSSP

» Let > be any surface map with genus g. Fix a face f of .

» We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.

Same strategy!

» Move a point s continously around f, maintaining both the
shortest-path tree rooted at s and the complementary
slacks. Whenever a non-tree edge becomes tense, relax it.

NS
WS

X
N ~7 D
v;‘q,,«@mz

AN

Same strategy!

» Move a point s continously around f, maintaining both the
shortest-path tree rooted at s and the complementary
slacks. Whenever a non-tree edge becomes tense, relax it.

NS
WS

X
A\ X ~7 D
%4»43

AN

Complementary grove

» The dual cut graph X* = (G\T)* is no longer a spanning tree!

» Grove decomposition: partition X* into 6g subtrees of G*.

> Each subtree contains one dual cut path and all attached “hair”
> Maintain each subtree in its own dynamic forest data structure

Where are the pivots?

» All active edges are dual to edges in some dual cut path.

» We can find and execute each pivot using O(g) dynamic
forest operations = O(g log n) amortized time.

How many pivots?

» Each directed edge pivots into T at most 4g times.

> 4g = max # disjoint non-homotopic paths between two points in 2
> = # edges in a system of quads!

» So the total number of pivots is O(gn)

[Cabello Chambers Erickson 2013]
Su m mary [Fox Erickson Lkhamsuren 2018]

» Given any surface map 2 with complexity n and genus g,
with non-negatively weighted edges, and a face f.

» We can (implicitly) compute shortest-path distances from
every vertex of f to every vertex of ...

> in O(gn log n) time with high probability

> or in O(min{g, log n} - gn log n) worst-case deterministic time

PiCky detai |S [Cabello Chambers Erickson 2013]

» Everything so far assumes that shortest paths are unique,
and that at most one edge becomes tense at a time.

» We can enforce this assumption by perturbing the edge
weights.

> Randomized perturbation: O(1) time penalty, but succeeds only with
high probability
[Mulmuley Vazirani Vazirani 1987]

> Lexicographic perturbation: O(log n) time penalty
[Charnes 1952] [Dantzig Orden Wolfe 1955]

> Homologically-least leftmost (“holiest”) perturbation: O(g) time penalty
[Fox Erickson Lkhamsuren 2018]

Shortest nontrivial cycles, take 2

FaSteI' algorithm [Cabello Chambers 2007]

To compute the shortest nonseparating cycle:
> Compute a greedy system of cycles y1, v2, ..., V2g
> Find the shortest cycle that crosses each greedy cycle y; once

A|gOI‘ith m [Cabello Chambers 2007]

» To find the shortest cycle that crosses y; once:

> Cut the surface open along y;. Resulting surface ¥s<y; has two copies
of y on its boundary.

> Find shortest path in Xs<y; between two copies of each vertex of y;
> MSSP: O(gn log n) time with high probability

)

Algorithm 1 [Cabello Chambers Erickson 2013]

To compute the shortest nonseparating cycle:
> Compute a greedy tree-cotree decomposition
> Compute a greedy system of cycles y1, v, ..., V2g
> Find the shortest cycle that crosses each greedy cycle yi once

» O(g2n log n) time with high probability

» This is the fastest algorithm known in terms of both n and g.

One-crOSS Iemmas [Cabello Chambers 2007]

» Let y* be the shortest noncontractible cycle, and let £ be the
shortest noncontractible loop at an arbitrary basepoint.

» Then y* and ¢ cross at most once.

> >

One-crOSS Iemmas [Cabello Chambers 2007]

» Let y* be the shortest noncontractible cycle, and let it be a
shortest nonseparating path between two boundary points.

» Then y* and 1t cross at most once.

Algorithm 2 [Cabello Chambers Erickson 2013]

To compute the shortest noncontractible cycle:

> Find shortest non-contractible loop ¢ at some basepoint
> Find shortest cycle crossing £ once
> Cut the surface along ¢
> While the surface is not a disk:
 Find shortest non-separating boundary to boundary path 1t

 Find shortest cycle crossing 1t once
 Cut the surface along 1t

» O(g2n log n) time with high probability

» This is the fastest algorithm known in terms of both n and g.

Thank you!

PN

[Free Gruchy (“Slow-Mo Guys”) 2018]

Thank you!

PN

[Free Gruchy (“Slow-Mo Guys”) 2018]

Continuous surfaces

or “Why not solve the real problem?”

Structural results generalize...

» The 3-path and 1-crossing conditions still hold

» The shortest non-trivial cycle still contains shortest paths
between any pair of antipodal points

» The greedy system of loops is still optimal

» Every cycle in a greedy system of cycles contains shortest
paths between any two antipodal points

» The continuous analogue of the
greedy cut graph is a cut locus

...but what about algorithms?

» All algorithms ultimately rely on computing shortest paths.

» SO we must be given a surface representation that supports
computing shortest paths!

N\
L

[Borelli Jabrane Lazarus Rohmer Thibert 2012]

Piecewise-linear surfaces

» Complex of Euclidean polygons with pairs of equal-length
edges identified (glued)

Piecewise-linear surfaces

» Metric is Euclidean everywhere except at vertices
» Paths and cycles can be anywhere on the surface

PL shortest paths

» “Continuous Dijkstra”

> O(n? log n) time [Mitchell Mount Papadimitriou 1987]
> O(n2) [Chen Han 1990]

» This lets us compute shortest nontrivial
cycles in O(n3) time.

» Lots of approximation algorithms, faster special
cases, practical heuristics, and false starts

> Practical implementation [Surazhsky Surazhsky
Kirsanov Gortler Hoppe 2005]

> Heat equation [Crane Weischedel Wardetzky 2013]

Hidden assumptions

» Exact algorithms require exact real arithmetic
> Ugly theoretical qguagmire, but not a significant issue “in practice”

» Analysis assumes that every shortest path crosses each
edge of the given PL structure at most once.

> True for piecewise-flat maps into any Re.

> True (or close enough) for PL triangulations with fat triangles

> True for some PL structure of every PL surface.
[Zalgaller 1958] [Burago Zalgaller 1995] [Bern Hayes 20717]

> But not true for arbitrary PL structures!

[Alexandrov 1942]

Toilet paper tube [Zalgaller 1997]

Square (sic) flat torus

(Fn+2) Fn+1)

{14

[Borelli Jabrane Lazarus
Rohmer Thibert 2012]

(0,0)

Unbounded time

» Let a = maximum aspect ratio of any triangular facet.

» Good news:

> Any shortest path crosses each edge O(a) times (and this is tight).
> So we can find the shortest nontrivial cycles in O(poly(n, a)) time!

» Bad news:

> If edge lengths or local coordinates are integers, then a can be
exponential in the input size (# vertices + # edges + # bits).

> If edge lengths or local coordinates are real numbers, then a is
not bounded by any function of the input size (# vertices + # edges).

Normal coordinates to the rescue?

» We can implicitly represent any simple cycle or arc using

O(n log X) bits, where X = # crossings.
[Kneser 1930]

» Several algorithms for normal curves:

> Counting and isolating components 3
> Counting isotopy classes

> Intersection numbers
> Image of one curve under a mapping class 4
> Distance between two curves in the curve complex

> Classifying mapping classes

[Schaefer, Sedgwick, Stefankovic 2003] [Agol Hass Thurston 2006]
[Erickson Nayyeri 2013] [Bell Webb 2016]

Normal coordinates to the rescue?

» We can “trace” any simple geodesic through a PL

triangulation in O(n? log X) time.
[Erickson Nayyeri 2013]

Normal coordinates to the rescue?

» We can compute a minimal (abstract) triangulation for a

given normal curve in O(poly(n log X)) time.
[Bell 2016] [Bell Webb 2016]

a

e Flip / ¥
b d — W
-) ﬁ

N

N\ 5 | "¢ Twist 5= \
T TSN

AN

Open problems

» Can we compute (the normal coordinates of) the shortest
nontrivial cycle in an arbitrary triangulated PL surface in
O(poly(n log a)) time?

Open problems

» Can we compute (the normal coordinates of) the shortest
nontrivial cycle in an arbitrary triangulated PL surface in
O(poly(n log a)) time?

» More generally, can we compute a useful PL triangulation
(for example, the intrinsic Delaunay triangulation) of an
arbitrary triangulated PL surface in O(poly(n log a)) time?

Thank you!

.--— -u.u.\.._ I—h-h-h

[Segerman 2015]

