One-Dimensional Computational Topology III. Shortest nontrivial cycles

Jeff Erickson

University of Illinois, Urbana-Champaign

Today's Question

Given a surface Σ , find the shortest topologically nontrivial cycle in Σ .

Trivial cycles

- contractible = null-homotopic = boundary of a disk
- separating = null-homologous = boundary of a subsurface

Surface reconstruction

Surface reconstruction

Surface reconstruction

Topological noise

 Measurement errors from the scanning device add extra handles/tunnels to the reconstructed surface.

[Wood, Hoppe, Desbrun, Schröder '04]

Topological noise

These extra tunnels make compression difficult.

genus 104 50K vertices

genus 6 50K vertices

[Wood, Hoppe, Desbrun, Schröder '04]

Connections

- Length of shortest noncontractible cycle
 - ▷ **systole** [Loewner '49] [Pu '52] ... [Gromov 83] ...
 - representativity [Robertson, Seymour 87]
 - edge-width [Thomassen 90; Mohar, Thomassen 99]
- First step of many other topological graph algorithms
- Related to broader problems in topological data analysis
 - > Coverage analysis of ad-hoc/sensor networks
 - Identifying (un)important topological features in high-dimensional data sets

"Given"?

- Input:
 - \triangleright Orientable surface map Σ with complexity *n* and genus *g*.
 - ▷ Length $l(e) \ge 0$ for every edge of Σ
 - No other assumptions. Not even the triangle inequality.

"Given"?

- Input:
 - \triangleright Orientable surface map Σ with complexity *n* and genus *g*.
 - ▷ Length $l(e) \ge 0$ for every edge of Σ
 - No other assumptions. Not even the triangle inequality.

Output:

 \triangleright Minimum-length cycle in the graph of Σ that is noncontractible or nonseparating in $\Sigma.$

Systolic inequalities

- Any Riemannian surface can be approximated (up to constant factors) by a combinatorial triangulation, and vice versa.
 - ▷ discrete→continuous: glue equilateral triangles, smooth vertices
 - ▷ continuous→discrete: intrinsic Voronoi diagram of ϵ -net
- ► Every Riemannian surface has systole $\leq \frac{2}{3}\sqrt{A/g}\log g$ [Gromov 1983, 1992]

⇒ Every triangulated surface map has edgewidth $\leq 2\sqrt{n/g} \log g$ Improves [Hutchinson 1988]

► There are Riemannian surfaces with systole $\ge \frac{1}{3}\sqrt{A/g}\log g$ [Buser Sarnak 1994]

⇒ There are triangulated surface maps with edgewidth $\ge \frac{1}{7}\sqrt{n/g}\log g$ Conjectured by [Przytycka Przytycki 1993]

A *partition* of the edges into three disjoint subsets:

- A spanning tree **T**
- A spanning cotree $C C^*$ is a spanning tree of G^*
- Leftover edges $L := E \setminus (C \cup T) Euler's$ formula implies |L| = 2g

A *partition* of the edges into three disjoint subsets:

- A spanning tree **T**
- A spanning cotree $C C^*$ is a spanning tree of G^*
- Leftover edges $L := E \setminus (C \cup T) Euler's$ formula implies |L| = 2g

A *partition* of the edges into three disjoint subsets:

- A spanning tree **T**
- A spanning cotree $C C^*$ is a spanning tree of G^*
- Leftover edges $L := E \setminus (C \cup T) Euler's$ formula implies |L| = 2g

A *partition* of the edges into three disjoint subsets:

- A spanning tree T
- A spanning cotree $C C^*$ is a spanning tree of G^*
- Leftover edges $L := E \setminus (C \cup T) Euler's$ formula implies |L| = 2g

Fundamental loops and cycles

- ▶ Fix a tree-cotree decomposition (*T*, *L*, *C*) and a *basepoint x*.
- Nontree edge uv defines a fundamental loop loop(T,uv):
 path from x to u + uv + path from v to x
- Nontree edge uv defines a fundamental cycle cycle(T,uv):
 - b unique cycle in TU{uv}
 - ▷ path from lca(u,v) to u + uv + path from v to lca(u,v)

▶ System of loops $\{loop(T, e) | e \in L\}$

- \triangleright Cutting Σ along these loops leaves a disk
- \triangleright Basis for the fundamental group $\pi_1(\Sigma, x)$

▶ System of cycles $\{cycle(T, e) | e \in L\}$

- ▷ 2g simple cycles
- \triangleright Basis for the first homology group $H_1(\Sigma)$

- Cut graph $T \cup L = \Sigma \setminus C$
- ▶ Remove degree-1 vertices ⇒ reduced cut graph
 - Minimal subgraph with one face
 - Composed of at most 3g cut paths meeting at most 2g branch points

- Often useful to build these structures in the dual map Σ^* .
 - b dual system of loops
 - b dual cut graph
 - ▷ dual system of cocycles = basis for first cohomology group $H^{1}(\Sigma)$

- Every noncontractible cycle in Σ crosses every (dual) reduced cut graph.
- Every nonseparating cycle in Σ crosses at least one (co)cycle in every system of (co)cycles.

Shortest nontrivial cycles, take 1

Three-path condition

- Any three paths with the same endpoints define three cycles.
- ▶ If any two of these cycles are trivial, so is the third.

Three-path condition

- The shortest nontrivial cycle consists of two shortest paths between any pair of antipodal points.
- Otherwise, the actual shortest path would create a shorter nontrivial cycle.

Greedy tree-cotree decomposition

- Assume edges have lengths $\ell(e) \ge 0$
- T = shortest-path tree in Σ with arbitrary source vertex x
 - BFS tree if all lengths = 1
- $C^* = maximum$ spanning tree of Σ^* where $w(e^*) = \ell(loop(T,e))$
- Computable in O(n log n) time using textbook algorithms.
 - \triangleright O(n) time if all lengths = 1
 - ▷ O(n) time if $g=O(n^{1-\varepsilon})$ [Henzinger et al. '97]

[Eppstein 2003, Erickson Whittlesey 2005]

Shortest nontrivial loops

- ▶ Build greedy tree-cotree decomposition (*T*, *L*, *C*) based at *x*.
- Build dual cut graph $X^* = L^* \cup C^*$
- Reduce X* to get R*

[Erickson Har-Peled 2005]

Shortest nontrivial loops

- ▶ 3-path condition \Rightarrow We want loop(T, e) for some $e \notin T$
- Ioop(T, e) is noncontractible iff e*∈R*
- Ioop(T, e) is nonseparating iff e*∈R* and R*\e* is connected

[Erickson Har-Peled 2005] [Cabello, Colin de Verdière, Lazarus 2010]

Shortest nontrivial loops

- ▶ 3-path condition \Rightarrow We want loop(T, e) for some $e \notin T$
- ► loop(T, e) is noncontractible iff e*∈R*
- Ioop(T, e) is nonseparating iff R*\e* is connected

[Erickson Har-Peled 2005] [Cabello, Colin de Verdière, Lazarus 2010]

- ▶ For each basepoint: O(n log n) time.
- Try all possible basepoints: $O(n^2 \log n)$ time.

- ▶ For each basepoint: O(n log n) time.
- Try all possible basepoints: $O(n^2 \log n)$ time.
- This is the fastest algorithm known.
 - Significant improvement would also improve the best time to compute the girth of a sparse graph: O(n²) = BFS at each vertex [Itai Rodeh 1978]
 - Computing the girth of a dense graph is at least as hard as all-pairs shortest paths and boolean matrix multiplication. [Vassilevska Williams, Williams 2010]

One-cross lemmas

- The shortest nontrivial cycle crosses any shortest path at most once
- Otherwise, we could find a shorter nontrivial cycle!

One-cross lemmas

- Let γ* be the shortest nonseparating cycle, and let γ be any cycle in a greedy system of cycles.
- ► Then y* and y cross at most once.

Faster algorithm

To compute the shortest *nonseparating* cycle:

- \triangleright Compute a greedy system of cycles γ_1 , γ_2 , ..., γ_{2g}
- \triangleright Find the shortest cycle that crosses each greedy cycle γ_i once

Algorithm

- To find the shortest cycle that crosses γ_i once:
 - ▷ Cut the surface open along γ_i . Resulting surface $\Sigma \approx \gamma_i$ has two copies of γ on its boundary.
 - ▷ Find the shortest path in $\Sigma \approx \gamma_i$ between the clones of each vertex of γ_i

[Free Gruchy ("Slow-Mo Guys") 2018]

[Free Gruchy ("Slow-Mo Guys") 2018]

Naïve algorithm

- For each boundary vertex s, compute the shortest-path tree rooted at s in O(n log n) time. [Dijkstra 1956]
- The overall algorithm runs in $O(n^2 \log n)$ time.

But in fact, we can (implicitly) compute all such distances in just O(g²n log n) time.

- Let's start with the simplest possible setting.
- Implicitly compute shortest paths in a plane graph G from every boundary vertex to every other vertex.

- Let's start with the simplest possible setting.
- Implicitly compute shortest paths in a plane graph G from every boundary vertex to every other vertex.

- Let's start with the simplest possible setting.
- Implicitly compute shortest paths in a plane graph G from every boundary vertex to every other vertex.

- Let's start with the simplest possible setting.
- Implicitly compute shortest paths in a plane graph G from every boundary vertex to every other vertex.

[Klein 2005]

 Intuitively, we want the shortest-path tree rooted at every boundary vertex.

[Klein 2005]

 Intuitively, we want the shortest-path tree rooted at every boundary vertex.

The disk-tree lemma

- Let T be any tree embedded on a closed disk. Vertices of T subdivide the boundary of the disk into intervals.
- Deleting any edge splits T into two subtrees R and B.
- ▶ At most two intervals have one end in *R* and the other in *B*.

The disk-tree lemma

- Let T be any tree embedded on a closed disk. Vertices of T subdivide the boundary of the disk into intervals.
- Deleting any edge splits T into two subtrees R and B.
- ▶ At most two intervals have one end in *R* and the other in *B*.

The disk-tree lemma

- Let T be any tree embedded on a closed disk. Vertices of T subdivide the boundary of the disk into intervals.
- Deleting any edge splits T into two subtrees R and B.
- ▶ At most two intervals have one end in *R* and the other in *B*.

- Each directed edge $x \rightarrow y$ pivots in *at most once*.
 - ▷ Consider the tree of shortest paths *ending at* y.

- Each directed edge $x \rightarrow y$ pivots in *at most once*.
 - ▷ Consider the tree of shortest paths *ending at y*.

- Each directed edge $x \rightarrow y$ pivots in *at most once*.
 - > Consider the tree of shortest paths ending at y.

▹ So the overall number of pivots is only O(n)!

- ▶ So the overall number of pivots is only O(n)!
- But how do we find these pivots quickly?

[Ford 1956]

Input:

- > Directed graph G = (V, E)
- ▷ length $l(u \rightarrow v)$ for each edge $u \rightarrow v$
- ▷ A source vertex s.
- Each vertex v maintains two values:
 - \triangleright dist(v) is the length of some path from s to v
 - \triangleright pred(v) is the next-to-last vertex of that path from s to v.

► Edge $u \rightarrow v$ is tense iff $dist(v) \ge dist(u) + \ell(u \rightarrow v)$.

► Edge $u \rightarrow v$ is tense iff $dist(v) \ge dist(u) + \ell(u \rightarrow v)$.

► Edge $u \rightarrow v$ is tense iff $dist(v) \ge dist(u) + \ell(u \rightarrow v)$.

► To relax $u \rightarrow v$, set $dist(v) = dist(u) + \ell(u \rightarrow v)$ and pred(v) = u

► Edge $u \rightarrow v$ is tense iff $dist(v) \ge dist(u) + \ell(u \rightarrow v)$.

► To relax $u \rightarrow v$, set $dist(v) = dist(u) + \ell(u \rightarrow v)$ and pred(v) = u

► Edge $u \rightarrow v$ is tense iff $dist(v) \ge dist(u) + \ell(u \rightarrow v)$.

► To relax $u \rightarrow v$, set $dist(v) = dist(u) + \ell(u \rightarrow v)$ and pred(v) = u

► Edge $u \rightarrow v$ is tense iff $dist(v) \ge dist(u) + \ell(u \rightarrow v)$.

If no edges are tense, then dist(v) is the length of the shortest path from s to v, for every vertex v.

- Maintain the shortest path tree rooted at a point s that is moving continuously around the outer face.
- ► Also maintain the *slack* of each edge $u \rightarrow v$: $slack(u \rightarrow v) := dist(u) + \ell(u \rightarrow v) - dist(v)$
- Distances and slacks change continuously with s, but in a controlled manner.
- The shortest path tree is correct as long as $slack(u \rightarrow v) > 0$ for every edge $u \rightarrow v$.

Distance and slack changes

- Red: dist growing
- Blue: dist shrinking

Distance and slack changes

- Red: dist growing
- Blue: dist shrinking
- ▶ Red→red: slack constant
- Blue→blue: slack constant
- ▶ Red→blue: slack growing
- Blue→red: slack shrinking

Distance and slack changes

- Red: dist growing
- Blue: dist shrinking
- ▶ Red→red: slack constant
- Blue→blue: slack constant
- ▶ Red→blue: slack growing
- Blue→red: slack shrinking
 - b active edges

Tree-cotree decomposition

[von Staudt 1847] [Whitney 1932] [Dehn 1936]

- Complementary dual
 spanning tree C* = (G\T)*
- Red and blue subtrees are separated by a path in C*
- Active edges are dual to edges in this path.

Tree-cotree decomposition

[von Staudt 1847] [Whitney 1932] [Dehn 1936]

- Complementary dual
 spanning tree C* = (G\T)*
- Red and blue subtrees are separated by a path in C*
- Active edges are dual to edges in this path.

- Pivot
- ▶ When $slack(u \rightarrow v)$ becomes 0, relax $u \rightarrow v$
 - ▷ Delete $pred(v) \rightarrow v$ from T
 - ▷ Insert $u \rightarrow v$ into T.
 - ▷ Delete $(u \rightarrow v)^*$ from C^* .
 - ▷ Insert ($pred(v) \rightarrow v$)* into C*
 - \triangleright Set pred(u) := v

- Pivot
- ▶ When $slack(u \rightarrow v)$ becomes 0, relax $u \rightarrow v$
 - ▷ Delete $pred(v) \rightarrow v$ from T
 - ▷ Insert $u \rightarrow v$ into T.
 - ▷ Delete $(u \rightarrow v)^*$ from C^* .
 - ▷ Insert ($pred(v) \rightarrow v$)* into C*
 - \triangleright Set pred(u) := v

- Pivot
- ▶ When $slack(u \rightarrow v)$ becomes 0, relax $u \rightarrow v$
 - ▷ Delete $pred(v) \rightarrow v$ from T
 - ▷ Insert $u \rightarrow v$ into T.
 - ▷ Delete $(u \rightarrow v)^*$ from C^* .
 - ▷ Insert ($pred(v) \rightarrow v$)* into C*
 - \triangleright Set pred(u) := v

- Pivot
- ▶ When $slack(u \rightarrow v)$ becomes 0, relax $u \rightarrow v$
 - ▷ Delete $pred(v) \rightarrow v$ from T
 - ▷ Insert $u \rightarrow v$ into T.
 - ▷ Delete $(u \rightarrow v)^*$ from C^* .
 - ▷ Insert ($pred(v) \rightarrow v$)* into C*
 - \triangleright Set pred(u) := v

- When $slack(u \rightarrow v)$ becomes 0, relax $u \rightarrow v$
 - ▷ Delete $pred(v) \rightarrow v$ from T
 - ▷ Insert $u \rightarrow v$ into *T*.

Pivot

- ▷ Delete $(u \rightarrow v)^*$ from C^* .
- ▷ Insert ($pred(v) \rightarrow v$)* into C*
- \triangleright Set *pred*(*u*) := *v*

- Pivot
- ▶ When $slack(u \rightarrow v)$ becomes 0, relax $u \rightarrow v$
 - ▷ Delete $pred(v) \rightarrow v$ from T
 - ▷ Insert $u \rightarrow v$ into T.
 - ▷ Delete $(u \rightarrow v)^*$ from C^* .
 - ▷ Insert ($pred(v) \rightarrow v$)* into C*
 - \triangleright Set pred(u) := v

Pivots

- Vertices can only change from red to blue.
- ▶ So any edge that pivots into *T* stays in *T*.

Pivots

- Vertices can only change from red to blue.
- ▶ So any edge that pivots into *T* stays in *T*.

Fast implementation

[Sleator Tarjan 1983] : [Tarjan Werneck 2005]

- We maintain T and C* in dynamic forest data structures that support the following operations in O(log n) amortized time:
 - Remove and insert edges:
 - Cut(*uv*), Link(*u*,*v*)
 - ▷ Maintain distances at vertices of *T*:
 - GETNODEVALUE(V), $ADDSUBTREE(\Delta, V)$
 - Maintain slacks at edges of C*:
 - $GETDARTVALUE(u \rightarrow v)$, $ADDPATH(\Delta, u, v)$, MINPATH(u, v)

 So we can identify and execute each pivot in O(log n) amortized time.

- We can (implicitly) compute distances from every boundary vertex to every vertex in any planar map in O(n log n) time!
- More accurately: Given k vertex pairs, where one vertex of each pair is on the boundary, we can compute those k shortest-path distances in O(n log n + k log n) time.

- Let Σ be any surface map with genus g. Fix a face f of Σ .
- We want to compute the shortest path trees rooted at every vertex of some "outer" face f.

- Let Σ be any surface map with genus g. Fix a face f of Σ .
- We want to compute the shortest path trees rooted at every vertex of some "outer" face f.

- Let Σ be any surface map with genus g. Fix a face f of Σ .
- We want to compute the shortest path trees rooted at every vertex of some "outer" face f.

- Let Σ be any surface map with genus g. Fix a face f of Σ .
- We want to compute the shortest path trees rooted at every vertex of some "outer" face f.

- Let Σ be any surface map with genus g. Fix a face f of Σ .
- We want to compute the shortest path trees rooted at every vertex of some "outer" face f.

Same strategy!

Move a point s continuesly around f, maintaining both the shortest-path tree rooted at s and the complementary slacks. Whenever a non-tree edge becomes tense, relax it.

Same strategy!

Move a point s continuesly around f, maintaining both the shortest-path tree rooted at s and the complementary slacks. Whenever a non-tree edge becomes tense, relax it.

Complementary grove

- The dual cut graph $X^* = (G \setminus T)^*$ is no longer a spanning tree!
- ▶ Grove decomposition: partition X* into 6g subtrees of G*.
 - > Each subtree contains one dual cut path and all attached "hair"
 - > Maintain each subtree in its own dynamic forest data structure

Where are the pivots?

- ▶ All active edges are dual to edges in some dual cut path.
- We can find and execute each pivot using O(g) dynamic forest operations = O(g log n) amortized time.

How many pivots?

- Each directed edge pivots into T at most 4g times.
 - \triangleright 4g = max # disjoint non-homotopic paths between two points in Σ
 - > = # edges in a system of quads!
- ▸ So the total number of pivots is O(gn)

Summary

[Cabello Chambers Erickson 2013] [Fox Erickson Lkhamsuren 2018]

- Given any surface map Σ with complexity n and genus g, with non-negatively weighted edges, and a face f.
- We can (implicitly) compute shortest-path distances from every vertex of f to every vertex of Σ...
 - ▷ in O(gn log n) time with high probability
 - ▷ or in $O(\min\{g, \log n\} \cdot gn \log n)$ worst-case deterministic time

Picky details

- Everything so far assumes that shortest paths are unique, and that at most one edge becomes tense at a time.
- We can enforce this assumption by perturbing the edge weights.
 - Randomized perturbation: O(1) time penalty, but succeeds only with high probability [Mulmuley Vazirani Vazirani 1987]
 - Lexicographic perturbation: O(log n) time penalty [Charnes 1952] [Dantzig Orden Wolfe 1955]
 - Homologically-least leftmost ("holiest") perturbation: O(g) time penalty [Fox Erickson Lkhamsuren 2018]

Shortest nontrivial cycles, take 2

Faster algorithm

To compute the shortest *nonseparating* cycle:

- \triangleright Compute a greedy system of cycles γ_1 , γ_2 , ..., γ_{2g}
- \triangleright Find the shortest cycle that crosses each greedy cycle γ_i once

Algorithm

- ► To find the shortest cycle that crosses *y_i* once:
 - ▷ Cut the surface open along γ_i . Resulting surface $\Sigma \approx \gamma_i$ has two copies of γ on its boundary.
 - ▷ Find shortest path in $\Sigma \approx \gamma_i$ between two copies of each vertex of γ_i
 - ▷ **MSSP:** O(gn log n) time with high probability

Algorithm 1

To compute the shortest nonseparating cycle:

- Compute a greedy tree-cotree decomposition
- \triangleright Compute a greedy system of cycles γ_1 , γ_2 , ..., γ_{2g}
- \triangleright Find the shortest cycle that crosses each greedy cycle γ_i once
- ► O(g² n log n) time with high probability
- ▶ This is the fastest algorithm known in terms of both *n* and *g*.

One-cross lemmas

- Let y* be the shortest noncontractible cycle, and let ℓ be the shortest noncontractible loop at an arbitrary basepoint.
- ► Then y* and l cross at most once.

One-cross lemmas

- Let γ^* be the shortest *noncontractible* cycle, and let π be a shortest *nonseparating* path between two boundary points.
- Then γ^* and π cross at most once.

Algorithm 2

To compute the shortest noncontractible cycle:

- ▷ Find shortest non-contractible loop ℓ at some basepoint
- Find shortest cycle crossing & once
- Cut the surface along
- While the surface is not a disk:
 - Find shortest non-separating boundary to boundary path $\boldsymbol{\pi}$
 - Find shortest cycle crossing π once
 - Cut the surface along π
- ► O(g² n log n) time with high probability

• This is the fastest algorithm known in terms of both *n* and *g*.

Thank you!

[Free Gruchy ("Slow-Mo Guys") 2018]

Thank you!

[Free Gruchy ("Slow-Mo Guys") 2018]

Continuous surfaces

or "Why not solve the *real* problem?"

Structural results generalize...

- The 3-path and 1-crossing conditions still hold
- The shortest non-trivial cycle still contains shortest paths between any pair of antipodal points
- The greedy system of loops is still optimal
- Every cycle in a greedy system of cycles contains shortest paths between any two antipodal points
- The continuous analogue of the greedy cut graph is a cut locus

...but what about algorithms?

- All algorithms ultimately rely on computing shortest paths.
- So we must be given a surface representation that supports computing shortest paths!

[Borelli Jabrane Lazarus Rohmer Thibert 2012]

Piecewise-linear surfaces

 Complex of Euclidean polygons with pairs of equal-length edges identified (glued)

Piecewise-linear surfaces

- Metric is Euclidean everywhere except at vertices
- Paths and cycles can be anywhere on the surface

PL shortest paths

"Continuous Dijkstra"

- ▷ O(n² log n) time [Mitchell Mount Papadimitriou 1987]
- ▷ O(n²) [Chen Han 1990]
- This lets us compute shortest nontrivial cycles in O(n³) time.
- Lots of approximation algorithms, faster special cases, practical heuristics, and false starts
 - Practical implementation [Surazhsky Surazhsky Kirsanov Gortler Hoppe 2005]
 - Heat equation [Crane Weischedel Wardetzky 2013]

Hidden assumptions

- Exact algorithms require exact real arithmetic
 - > Ugly theoretical quagmire, but not a significant issue "in practice"
- Analysis assumes that every shortest path crosses each edge of the given PL structure at most once.
 - \triangleright True for piecewise-flat maps into any \mathbf{R}^{d} .
 - > True (or close enough) for PL triangulations with fat triangles
 - True for some PL structure of every PL surface. [Zalgaller 1958] [Burago Zalgaller 1995] [Bern Hayes 2011]
 - But not true for arbitrary PL structures!

Toilet paper tube

[Alexandrov 1942] [Zalgaller 1997]

Square (sic) flat torus

Unbounded time

• Let α = maximum *aspect ratio* of any triangular facet.

Good news:

- \triangleright Any shortest path crosses each edge $O(\alpha)$ times (and this is tight).
- > So we can find the shortest nontrivial cycles in $O(poly(n, \alpha))$ time!

Bad news:

- If edge lengths or local coordinates are integers, then α can be exponential in the input size (# vertices + # edges + # bits).
- If edge lengths or local coordinates are real numbers, then α is not bounded by any function of the input size (# vertices + # edges).

Normal coordinates to the rescue?

- We can *implicitly* represent any simple cycle or arc using O(n log X) bits, where X = # crossings. [Kneser 1930]
- Several algorithms for normal curves:
 - Counting and isolating components
 - Counting isotopy classes
 - Intersection numbers
 - Image of one curve under a mapping class
 - Distance between two curves in the curve complex
 - Classifying mapping classes

[Schaefer, Sedgwick, Štefankovic 2003] [Agol Hass Thurston 2006] [Erickson Nayyeri 2013] [Bell Webb 2016]

Normal coordinates to the rescue?

 We can "trace" any simple geodesic through a PL triangulation in O(n² log X) time.

[Erickson Nayyeri 2013]

Normal coordinates to the rescue?

 We can compute a minimal (abstract) triangulation for a given normal curve in O(poly(n log X)) time.

[Bell 2016] [Bell Webb 2016]

Open problems

 Can we compute (the normal coordinates of) the shortest nontrivial cycle in an arbitrary triangulated PL surface in O(poly(n log a)) time?

Open problems

- Can we compute (the normal coordinates of) the shortest nontrivial cycle in an arbitrary triangulated PL surface in O(poly(n log α)) time?
- More generally, can we compute a *useful* PL triangulation (for example, the intrinsic Delaunay triangulation) of an arbitrary triangulated PL surface in O(poly(n log a)) time?

Thank you!

[Segerman 2015]