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Maximum flows

How quickly can we move soldiers from Moscow to Berlin?

[Harris Ross ’55, Ford Fulkerson ‘56]
Figure 2

From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.

The max-flow min-cut theorem

In the RAND Report of 19 November 1954, Ford and Fulkerson [1954] gave (next to defining
the maximum flow problem and suggesting the simplex method for it) the max-flow min-
cut theorem for undirected graphs, saying that the maximum flow value is equal to the
minimum capacity of a cut separating source and terminal. Their proof is not constructive,
but for planar graphs, with source and sink on the outer boundary, they give a polynomial-
time, constructive method. In a report of 26 May 1955, Robacker [1955a] showed that the
max-flow min-cut theorem can be derived also from the vertex-disjoint version of Menger’s
theorem.

As for the directed case, Ford and Fulkerson [1955] observed that the max-flow min-cut
theorem holds also for directed graphs. Dantzig and Fulkerson [1955] showed, by extending
the results of Dantzig [1951a] on integer solutions for the transportation problem to the
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Minimum cuts

How cheaply can we separate Moscow from Berlin?

[Harris Ross ’55, Ford Fulkerson ‘56]
Figure 2

From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.

The max-flow min-cut theorem

In the RAND Report of 19 November 1954, Ford and Fulkerson [1954] gave (next to defining
the maximum flow problem and suggesting the simplex method for it) the max-flow min-
cut theorem for undirected graphs, saying that the maximum flow value is equal to the
minimum capacity of a cut separating source and terminal. Their proof is not constructive,
but for planar graphs, with source and sink on the outer boundary, they give a polynomial-
time, constructive method. In a report of 26 May 1955, Robacker [1955a] showed that the
max-flow min-cut theorem can be derived also from the vertex-disjoint version of Menger’s
theorem.

As for the directed case, Ford and Fulkerson [1955] observed that the max-flow min-cut
theorem holds also for directed graphs. Dantzig and Fulkerson [1955] showed, by extending
the results of Dantzig [1951a] on integer solutions for the transportation problem to the
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minimum capacity of a cut separating source and terminal. Their proof is not constructive,
but for planar graphs, with source and sink on the outer boundary, they give a polynomial-
time, constructive method. In a report of 26 May 1955, Robacker [1955a] showed that the
max-flow min-cut theorem can be derived also from the vertex-disjoint version of Menger’s
theorem.

As for the directed case, Ford and Fulkerson [1955] observed that the max-flow min-cut
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the results of Dantzig [1951a] on integer solutions for the transportation problem to the

25



Flow network

‣ An undirected graph G = (V,E) 

‣ A capacity function c :E→R+ 

‣ Two vertices: s (source) and t (target)
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Maximum flow

Assign directions and non-negative “flows” to edges so that 

▹ Maximum: Excess flow out of s (and into t) is maximized 

▹ Feasible: Flow through each edge is at most its capacity 

▹ Flow: Conservation at every vertex except s and t
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Minimum cut

Find a subset X of edges such that 

▹ Minimum: The total capacity of the edges in X is minimized 

▹ Cut: Every path from s to t uses at least one edge in X
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Max-flow Min-cut Theorem

‣ Value of maximum flow = capacity of minimum cut       

‣ Special case of linear programming duality.
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[Menger 1927] [Tucker 1948] [Ford Fulkerson 1954] [Elias Feinstein Shannon 1956]



Why do we care?

These are two of the most fundamental and broadly applied 
problems in combinatorial optimization.

Applications: 
‣ disjoint paths/routing 
‣ assignment 
‣ scheduling 
‣ load balancing 
‣ image/mesh segmentation 
‣ baseball elimination 
‣ minimum surface computation 
‣ homology localization 

Generalizations: 
‣ minimum-cost flows 
‣ multicommodity flows 
‣ weighted matching 
‣ network design 
‣ spectral analysis of graphs 
‣ metric embedding 
‣ peg solitaire 
‣ linear programming



Surface segmentation

[Katz Tal ’03] [Katz Liefman Tal ’05] [Golovinskiy Funkhouser ’08]



Minimal surfaces

‣ Plateau’s problem: Find a surface of minimum area with a 
given boundary curve

[Sullivan ‘90] [Hu et al ’92]...[Dey Hirani Krishnamoorthy ’10]...[Harrison Pugh ‘11]

16 J. HARRISON & H. PUGH

Figure 11. Each row of surfaces depicts a distinct type of minimal surface span-

ning the Borromean rings. A surface in the first row spans the Borromean rings

using any linking test. That is, every simple link of any number of curves must meet

the surface. In the second row, every simple link of one curve or all three curves

must meet the surface. The third row has mixed types.

number LpS,Aiq of S with one of the connected components Ai of A is equal to one, and LpS,Ajq “ 0
for the other connected components Aj of A, j ‰ i. We say that a compact subset X Ä Rn spans A

if every simple link of A intersects X (See Figure 11.)

If A is a topological pn ´ 2q-sphere then the set of spanning surfaces is the same as the collection
G

˚ above. Any orientable pn ´ 1q-manifold with boundary A spans A. The set A can be a frame
such as the pn ´ 2q-skeleton of an n-cube, in which case one can specify pn ´ 2q-cycles which the



Minimum cuts in planar graphs

s*
t*



Dual graph G*

‣ faces of G ⟷ vertices of G* 

‣ edges of G ⟷ edges of G* 

‣ vertices of G ⟷ faces of G*

u*

v*

f* g*f g

u

v

‣ Directed edges: head(e*) := right(e)* and tail(e*) = left(e)* 
(Intuitively, rotate 90° clockwise.) 



s*
t*

s
t

Planar minimum cuts

X is the minimum (s, t)-cut in G if and only if 
X* is the minimum cycle in G* separating s* and t*

[Jordan 1906] [Whitney 1932] [Itai Shiloach ’79]

 X*X



Planar minimum cuts

‣ Cut the dual annulus along a shortest path π 

‣ X* = shortest path between two copies of some vertex of π

s*
t*

ππ+

π–

π+π–

[Itai Shiloach 1979]



Planar minimum cuts

‣ Brute force: O(n2 log n) [Itai Shiloach ’79] 

‣ Divide and conquer: O(n log2 n) [Reif ’83] 

‣ Separator magic: O(n log n) [Frederickson ’87] [Henzinger et al. ’97] 

‣Multiple source shortest paths: O(n log n) [Klein ’05][Cabello Chambers ’09] 

‣ Even more separator magic: O(n log log n) [Italiano et al. ’11]

π+π–



Minimum cuts in surface graphs
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Surface graph duality

‣ Any surface graph G has a natural dual graph G*: 
▹ vertices of G* = faces of G 

▹ edges of G* = edges of G 

▹ faces of G* = vertices of G



ts t*s*

Minimum cuts in surface graphs

‣ X = minimum (s,t)-cut in G ⟺ X* = minimum-cost subgraph 
of G* separating s* and t* 

‣ X* is the union of up to g+1 cycles



Z2-homology

‣ Two subgraphs of G* are Z2-homologous if their symmetric 
difference is a boundary of the union of faces of G*.

[Poincaré 1900]



Z2-homology

‣ Two subgraphs of G* are Z2-homologous if their symmetric 
difference is a boundary of the union of faces of G*.

t*s*



Z2-homology of cuts

‣ X* is the minimum-cost subgraph that is Z2-homologous 
with ∂s* in the surface Σ \ (s* ∪ t*)

t*s*



Strategy

‣ Each component of X* is the shortest cycle in its own  
Z2-homology class. 

‣ Find the shortest cycle in every Z2-homology class, and 
then sew them together

t*s*



Z2-homology group

‣ Z2-homology classes define a finite vector space: 

‣ There are exactly 22g+1 distinct Z2-homology classes

t*s*

H1(Σ∖(s* ∪ t*); ℤ2) ≅ ℤ2g+1
2



Some vector spaces

vector space notation dimension (#bits)

even subgraphs 
(cycle space) Z1 |E|–|V|+1

boundary subgraphs B1 |F|–2

homology classes 
of even subgraphs H1 = Z1/B1 |E|–|V|–|F|+3 = 2g+1

Euler’s formula:  |V|–|E|+|F| = 2–2g



Measuring Z2-homology

‣ Cut Σ \ (s* ∪ t*) along 2g+1 paths π1, π2, ..., π2g+1 from s* to 
t* to get a disk D 

‣ The Z2-homology class [γ] of a cycle γ is characterized by 
which paths πi cross γ an odd number of times.

t*s*



Z2-homology cover

‣Make 22g+1 copies of D, one for each homology class 

‣ Glue copies that differ by 1 bit along corresponding path πi
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Z2-homology cover

‣ Resulting graph Ĝ has n̂ = 22g+1 n vertices (v, h) 

‣ Embedded on a surface with genus ĝ = 2O(g)
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Z2-homology cover

‣ Fix any vertex v of any cycle γ in G. 

‣ Then γ is the projection of a path in Ĝ from (v, 0) to (v, [γ]).
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Shortest Z2-homologous cycles

‣ Shortest cycle in G in any class h = projection of shortest 
path in Ĝ from (v,0) to (v,h), for any vertex v on the cycle
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Shortest Z2-homologous cycles

‣ The minimum cycle in every Z2-homology class can be 
computed in O(g ĝ n log n) = 2O(g) n log n time. 

▹ Using multiple-source shortest paths!  [Cabello Chambers Erickson 2013] 

‣ The minimum subgraph in every Z2-homology class can be 
computed in 2O(g) additional time by dynamic programming.



Summary

‣Minimum (s,t)-cuts in undirected surface graphs can be 
computed in 2O(g) n log n time. 

‣ Unfortunately: 

▹ Solves exponentially many instances of an NP-hard problem!        
[Chambers, Colin de Verdiére, Erickson, Lazarus, Whittlesey ’08]  
[Cabello, Colin de Verdiére, Lazarus ’11] [Chambers Erickson Nayyeri ‘09] 

▹ Fails for directed graphs, even in the plane!  The only approach known 
here is to compute the maximum flow.

[Erickson Nayyeri 2011]



Maximum flows in planar graphs

t*

s*
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Duality with shortest paths

Let f be an arbitrary flow in a planar flow network G. 

There is a feasible flow with value |f | in G 
if and only if 

the dual residual network Gf*  has no negative cycles.

[Hassin ‘81]  [Venkatesan ‘83]  [Miller Naor ‘89, ‘95]



Residual network Gf

‣ Fix a directed planar graph G with edge capacities c. 
▹ Any flow f defines residual capacities cf(e) := c(e) – f(e) 

▹ f is feasible ⟺ cf(e)≥0 for every edge e
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[Ford Fulkerson ’55]



Dual residual network Gf*

‣ residual capacities cf(e) ⟷ costs cf(e*)
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Proof

‣ First, suppose Gf*  has no negative cycles. 

▹ Fix a dual “origin” vertex o. 

▹ Let distf(p) := shortest-path distance from o to p in Gf*. 

▹ Let φ(e) := distf(right(e)*) – distf(left(e)*) + f(e). 

▹ It is easy to check that φ is a feasible flow with value |f|.



Proof

‣ On the other hand, suppose Gf*  has a negative cycle C*. 

▹ Then the dual of C* is a cut C with capacity less than |f|.

o

s*

t*
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[Whitney ’32]



‣ Duality reduces planar max-flow to the following problem:  

Given a graph Gλ* whose edge weights are linear  
functions of a parameter λ, find the largest value of λ 

such that Gλ* has no negative cycles. 

‣ Fix an arbitrary flow f with value 1, and define Gλ* := (Gλ⋅f)*

Parametric shortest paths
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[Karp Orlin ‘81]



Parametric shortest paths

‣Maintain shortest path tree Tλ as λ increases continuously from 0. 

‣ Tλ changes only at certain critical values of λ. 

‣ Pivot: non-tree edge p→q replaces tree edge p’→q. 

‣ Stop when a pivot introduces a cycle into Tλ (dual of min cut)

[Karp Orlin ‘81]



Time analysis

‣ Each pivot can be executed in O(log n) time. 
▹ Proof uses cycle-cut duality 

▹ Using standard dynamic forest data structures 
[Sleator Tarjan ‘83] [Alstrup et al ‘05] [Tarjan Werneck ‘07] 

‣ The algorithm halts after O(n) pivots. 
▹ Proof uses a covering space argument and cycle-cut duality 

‣ Thus, the overall running time is O(n log n).

[Borradaile Klein ’09] [E’ 10]



Interdigitating trees

‣ Let T be an arbitrary spanning tree of a planar graph G. 

‣ Then L* = (G \ T)* is a spanning tree of G*. 
▹ T is connected ⇒ L* is acyclic 

▹ T is acyclic ⇒ L* is connected

[Von Staudt 1847]
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Which edges can pivot?

‣ LPλ := unique path from s to t in the spanning tree Lλ = G \ Tλ* 

e* can pivot ⟺ e is in LPλ

Lλ
Tλ



Universal cover G*

‣ Unroll the annulus carrying G* into an infinite strip.
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Pivots in G*

‣ Every shortest path in Gλ*  lifts to a shortest path in G*

o0o0o0o0o0o0o0



Counting pivots

‣ Consider any arc p→q.   Fix a lift of q. 

‣Whenever pathλ(q) changes, lift of o moves one step left.

‣ p→q pivots in at most once and out at most once.
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The disk-tree lemma

‣ Let T be any tree embedded on a closed disk.  Vertices of T 
subdivide the boundary of the disk into intervals. 

‣ Deleting any edge splits T into two subtrees R and B. 

‣ At most two intervals with one end in R and the other in B.



Maximum flows in surface graphs
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Flows in surface graphs

‣We can’t use the planar algorithm, because the duality 
between flows and shortest paths is more complicated. 

‣ Once again, we need homology.



Boundary circulations

‣A boundary circulation is a function ∂α:E→R of the form 

for some function α :F→R.

⇥ �(u�v) := �(right(u�v))��(left(u�v))

49 5

‣α is an “Alexander numbering” of the circulation



Flow homology

‣ Two flows φ and ψ are homologous (or in the same 
homology class) if and only if their difference φ – ψ is a 
boundary circulation.  

‣ Two homologous flows always have the same value.  

‣ Flow homology classes define a real vector space

[Chambers Erickson Nayyeri ‘09]

H1(Σ, {s, t}; ℝ) ≅ ℝ2g+1



Some real vector spaces

Euler’s formula:  |V|–|E|+|F| = 2–2g

vector space notation dimension

(s,t)-flows Z1 |E|–|V|+2

boundary circulations B1 |F|–1

homology classes 
of (s,t)-flows H1 = Z1/B1 |E|–|V|–|F|+3 = 2g+1



Feasible homologous flows

Let f be an arbitrary flow in a 
surface-embedded flow network G 

There is a feasible flow in G that is homologous with f 
if and only if 

the dual residual network Gf
* has no negative cycles.

[Chambers Erickson Nayyeri ‘09]



Feasible homologous flow

‣ Lemma: We can compute either a shortest path tree or a 
negative cycle in Gf

* in O(g2 n log2 n) time. 

‣ Given an arbitrary flow f, we can compute either a flow 
homologous with f, or a cocycle over-saturated by f, in  
O(g2 n log2 n) time.

[Klein Mozes Weimann ’09] [Chambers Erickson Nayyeri ‘09]



Flow homology basis

‣ Let π1, π2, ..., π2g+1 be (s,t)-paths that cut Σ into a disk 

‣ Every (s,t)-flow is homologous to ∑i φi πi for some unique 
vector (φ1, φ2, ..., φ2g+1)

s
t



Flow homology polytope

‣ Set of feasible homology vectors = convex polytope in R2g+1 

▹ = Projection of the flow polytope into the homology subspace



Flow homology linear program

‣ Find a feasible homology vector (φ1, φ2, ..., φ2g+1) that 
maximizes the flow value φ1 + φ2 + · · · + φ2g+1 

‣ 2g+1 variables, but exponentially many constraints



Implicit linear programming

‣We can solve this LP implicitly using two oracles: 
▹ Membership: Is (φ1, φ2, ..., φ2g+1) feasible? 

▹ Separation: If not, find a violated constraint. 

‣We have an oracle that runs in O(g2 n log2 n) time! 

‣ If all capacities are integers ≤ C, we can compute maximum 
flows using implicit linear programming methods: 

▹ Central-cut ellipsoid ⇒ O(g8 n log2 n log2 C) time.  
[Shor Nemirovsky Yudin ’72] [Khachiyan ’79] [Grötschel Lovász Schrijver ‘81, ’93] 

▹ Random walk sampling ⇒ O(g6 n log2 n log C) expected time. 
[Bertsimas Vempala ’04]



Open questions

‣ Can we compute maximum flows on bounded-genus 
surface graphs in O(n log n) time? 
▹ Open even for unit-capacity undirected graphs on the torus (g=1)! 

‣ Can we compute minimum cuts or maximum flows in  
O(poly(g) n polylog n) time? 
▹ Open even for unit-capacity undirected graphs on the torus (g=1)! 

‣ Generalize to minimum-cost flows? 
▹ Current best is O(n2 log n), even for undirected planar graphs!



Thank you!

“Blush” — prototype radiator design 
[Thorunn Arnadottir 2007]


