One-Dimensional Computational Topology IV. Minimum cuts and maximum flows

Jeff Erickson

University of Illinois, Urbana-Champaign

Maximum flows

How quickly can we move soldiers from Moscow to Berlin?

[Harris Ross '55, Ford Fulkerson '56]

Minimum cuts

How cheaply can we separate Moscow from Berlin?

[Harris Ross '55, Ford Fulkerson '56]

Flow network

- An undirected graph G = (V,E)
- A capacity function $c: E \rightarrow \mathbb{R}^+$
- Two vertices: s (source) and t (target)

Maximum flow

Assign directions and non-negative "flows" to edges so that

- Maximum: Excess flow out of s (and into t) is maximized
- Feasible: Flow through each edge is at most its capacity
- Flow: Conservation at every vertex except s and t

Minimum cut

Find a subset **X** of edges such that

- Minimum: The total capacity of the edges in X is minimized
- Cut: Every path from s to t uses at least one edge in X

Max-flow Min-cut Theorem

- Value of maximum flow = capacity of minimum cut
- Special case of linear programming duality.

[Menger 1927] [Tucker 1948] [Ford Fulkerson 1954] [Elias Feinstein Shannon 1956]

Why do we care?

These are two of the most fundamental and broadly applied problems in combinatorial optimization.

Applications:

- disjoint paths/routing
- ► assignment
- scheduling
- Ioad balancing
- image/mesh segmentation
- baseball elimination
- minimum surface computation
- homology localization

Generalizations:

- minimum-cost flows
- multicommodity flows
- weighted matching
- network design
- spectral analysis of graphs
- metric embedding
- peg solitaire
- Iinear programming

Surface segmentation

[Katz Tal '03] [Katz Liefman Tal '05] [Golovinskiy Funkhouser '08]

Minimal surfaces

 Plateau's problem: Find a surface of minimum area with a given boundary curve

[Sullivan '90] [Hu et al '92]...[Dey Hirani Krishnamoorthy '10]...[Harrison Pugh '11]

Minimum cuts in planar graphs

Dual graph G*

- faces of $G \leftrightarrow$ vertices of G^*
- edges of $G \leftrightarrow$ edges of G^*
- vertices of $G \leftrightarrow$ faces of G^*

Directed edges: head(e*) := right(e)* and tail(e*) = left(e)* (Intuitively, rotate 90° clockwise.)

Planar minimum cuts

X is the minimum (s, t)-cut in G if and only if

X* is the minimum cycle in G* separating s* and t*

[Jordan 1906] [Whitney 1932] [Itai Shiloach '79]

Planar minimum cuts

- Cut the dual annulus along a shortest path π
- X^* = shortest path between two copies of some vertex of π

Planar minimum cuts

- ▶ Brute force: O(n² log n) [Itai Shiloach '79]
- ► Divide and conquer: O(n log² n) [Reif '83]
- Separator magic: O(n log n) [Frederickson '87] [Henzinger et al. '97]
- ► Multiple source shortest paths: O(n log n) [Klein '05][Cabello Chambers '09]
- ► Even more separator magic: O(n log log n) [Italiano et al. '11]

Minimum cuts in surface graphs

Surface graph duality

- Any surface graph G has a natural dual graph G*:
 - > vertices of G* = faces of G
 - \triangleright edges of G^* = edges of G
 - ▷ faces of G* = vertices of G

Minimum cuts in surface graphs

- ➤ X = minimum (s,t)-cut in G ⇔ X* = minimum-cost subgraph of G* separating s* and t*
- ★ X* is the union of up to g+1 cycles

Z₂-homology

Two subgraphs of G* are Z₂-homologous if their symmetric difference is a boundary of the union of faces of G*.

Z₂-homology

Two subgraphs of G* are Z₂-homologous if their symmetric difference is a boundary of the union of faces of G*.

Z₂-homology of cuts

X* is the minimum-cost subgraph that is Z₂-homologous with ∂s* in the surface Σ \ (s* ∪ t*)

Strategy

- Each component of X* is the shortest cycle in its own
 Z₂-homology class.
- Find the shortest cycle in every Z₂-homology class, and then sew them together

Z₂-homology group

Z₂-homology classes define a finite vector space:

$$H_1(\Sigma \setminus (s^* \cup t^*); \mathbb{Z}_2) \cong \mathbb{Z}_2^{2g+1}$$

▶ There are exactly 2^{2g+1} distinct Z₂-homology classes

Some vector spaces

vector space	notation	dimension (#bits)
even subgraphs (cycle space)	Z ₁	<i>E</i> - <i>V</i> +1
boundary subgraphs	B ₁	<i>F</i> -2
homology classes of even subgraphs	$H_1 = Z_1 / B_1$	<i>E</i> - <i>V</i> - <i>F</i> +3 = 2g+1

Euler's formula: |V| - |E| + |F| = 2 - 2g

Measuring Z₂-homology

- Cut Σ \ (s* ∪ t*) along 2g+1 paths π₁, π₂, ..., π_{2g+1} from s* to t* to get a disk D
- The Z₂-homology class [γ] of a cycle γ is characterized by which paths π_i cross γ an odd number of times.

Z₂-homology cover

- ▶ Make 2^{2g+1} copies of *D*, one for each homology class
- Glue copies that differ by 1 bit along corresponding path π_i

Z₂-homology cover

- Resulting graph \hat{G} has $\hat{n} = 2^{2g+1} n$ vertices (v, h)
- Embedded on a surface with genus $\hat{g} = 2^{O(g)}$

Z₂-homology cover

- Fix any vertex ν of any cycle γ in G.
- Then γ is the projection of a path in \hat{G} from (v, 0) to $(v, [\gamma])$.

Shortest Z₂-homologous cycles

• Shortest cycle in G in any class h = projection of shortest path in \hat{G} from (v,0) to (v,h), for any vertex v on the cycle

Shortest Z₂-homologous cycles

• The minimum cycle in **every** Z_2 -homology class can be computed in $O(g \hat{g} n \log n) = 2^{O(g)} n \log n$ time.

Using multiple-source shortest paths! [Cabello Chambers Erickson 2013]

The minimum subgraph in every Z₂-homology class can be computed in 2^{0(g)} additional time by dynamic programming.

Summary

Minimum (s,t)-cuts in undirected surface graphs can be computed in 2^{0(g)} n log n time.

Unfortunately:

- Solves exponentially many instances of an NP-hard problem! [Chambers, Colin de Verdiére, Erickson, Lazarus, Whittlesey '08] [Cabello, Colin de Verdiére, Lazarus '11] [Chambers Erickson Nayyeri '09]
- Fails for directed graphs, even in the plane! The only approach known here is to compute the maximum flow.

Maximum flows in planar graphs

Duality with shortest paths

Let f be an arbitrary flow in a planar flow network G. There is a *feasible* flow with value |f| in Gif and only if the *dual residual network* G_f^* has no negative cycles.

[Hassin '81] **[Venkatesan '83]** [Miller Naor '89, '95]

Residual network G_f

▶ Fix a directed planar graph G with edge capacities c.

- ▷ Any flow *f* defines *residual capacities* $c_f(e) := c(e) f(e)$
- ▷ *f* is feasible $\iff c_f(e) \ge 0$ for every edge *e*

[Ford Fulkerson '55]

Dual residual network **G**^{*}_f

▶ residual capacities $c_f(e) \leftrightarrow \text{costs } c_f(e^*)$

Proof

- First, suppose G_f^* has no negative cycles.
 - Fix a dual "origin" vertex o.
 - ▷ Let $dist_f(p) := shortest-path distance from o to p in G_f^*$.
 - $\triangleright \operatorname{Let} \varphi(e) := \operatorname{dist}_{f}(\operatorname{right}(e)^{*}) \operatorname{dist}_{f}(\operatorname{left}(e)^{*}) + f(e).$
 - ▷ It is easy to check that φ is a feasible flow with value |f|.

Proof

- On the other hand, suppose G_f^* has a negative cycle C^* .
 - > Then the dual of C^* is a cut C with capacity less than |f|.

[Whitney '32]

Duality reduces planar max-flow to the following problem:

Given a graph G_{λ}^* whose edge weights are linear functions of a *parameter* λ , find the largest value of λ such that G_{λ}^* has no negative cycles.

Fix an arbitrary flow f with value 1, and define $G_{\lambda^*} := (G_{\lambda \cdot f})^*$

Parametric shortest paths

- Maintain shortest path tree T_{λ} as λ increases continuously from 0.
- T_{λ} changes only at certain *critical values* of λ .
- ▶ *Pivot:* non-tree edge $p \rightarrow q$ replaces tree edge $p' \rightarrow q$.
- Stop when a pivot introduces a cycle into T_{λ} (dual of min cut)

Time analysis

- Each pivot can be executed in O(log n) time.
 - Proof uses cycle-cut duality
 - Using standard dynamic forest data structures [Sleator Tarjan '83] [Alstrup et al '05] [Tarjan Werneck '07]
- The algorithm halts after O(n) pivots.
 - Proof uses a covering space argument and cycle-cut duality
- Thus, the overall running time is $O(n \log n)$.

Interdigitating trees

- Let **T** be an arbitrary spanning tree of a planar graph **G**.
- Then $L^* = (G \setminus T)^*$ is a spanning tree of G^* .
 - ▷ **T** is connected \Rightarrow **L*** is acyclic
 - ▷ *T* is acyclic \Rightarrow *L** is connected

Which edges can pivot?

► LP_{λ} := unique path from s to t in the spanning tree $L_{\lambda} = G \setminus T_{\lambda}^{*}$

$$e^*$$
 can pivot $\iff e$ is in LP_{λ}

Universal cover **G***

▶ Unroll the annulus carrying G* into an infinite strip.

Pivots in **G***

• Every shortest path in G_{λ}^* lifts to a shortest path in \overline{G}^*

Counting pivots

- Consider any arc $p \rightarrow q$. Fix a lift of q.
- Whenever $path_{\lambda}(q)$ changes, lift of o moves one step left.

• $p \rightarrow q$ pivots in at most once and out at most once.

The disk-tree lemma

- Let T be any tree embedded on a closed disk. Vertices of T subdivide the boundary of the disk into intervals.
- Deleting any edge splits T into two subtrees R and B.
- ▶ At most two intervals with one end in *R* and the other in *B*.

Maximum flows in surface graphs

Flows in surface graphs

- We can't use the planar algorithm, because the duality between flows and shortest paths is more complicated.
- Once again, we need *homology*.

Boundary circulations

► A *boundary circulation* is a function $\partial \alpha: E \rightarrow \mathbf{R}$ of the form

 $\partial \alpha(\mathbf{u} \rightarrow \mathbf{v}) := \alpha(\operatorname{right}(\mathbf{u} \rightarrow \mathbf{v})) - \alpha(\operatorname{left}(\mathbf{u} \rightarrow \mathbf{v}))$

for some function $\alpha: F \rightarrow \mathbf{R}$.

 $\bullet \alpha$ is an "Alexander numbering" of the circulation

Flow homology

- Two flows φ and ψ are homologous (or in the same homology class) if and only if their difference φ ψ is a boundary circulation.
- Two homologous flows always have the same value.
- Flow homology classes define a real vector space

 $H_1(\Sigma, \{s, t\}; \mathbb{R}) \cong \mathbb{R}^{2g+1}$

Some real vector spaces

vector space	notation	dimension
<mark>(s,t)</mark> -flows	Z ₁	<i>E</i> - <i>V</i> + 2
boundary circulations	B 1	<i>F</i> -1
homology classes of (s,t)-flows	$H_1 = Z_1 / B_1$	<i>E</i> - <i>V</i> - <i>F</i> +3 = 2g+1

Euler's formula: |V| - |E| + |F| = 2 - 2g

Feasible homologous flows

Let *f* be an arbitrary flow in a *surface-embedded* flow network *G*

There is a *feasible* flow in G that is *homologous with f* if and only if the *dual residual network* G_f^* has no negative cycles.

[Chambers Erickson Nayyeri '09]

Feasible homologous flow

- Lemma: We can compute either a shortest path tree or a negative cycle in G^{*}_f in O(g² n log² n) time.
- Given an arbitrary flow *f*, we can compute either a flow homologous with *f*, or a cocycle over-saturated by *f*, in O(g² n log² n) time.

Flow homology basis

- Let $\pi_1, \pi_2, ..., \pi_{2g+1}$ be (s,t)-paths that cut Σ into a disk
- Every (s,t)-flow is homologous to Σ_i φ_i π_i for some unique vector (φ₁, φ₂, ..., φ_{2g+1})

Flow homology polytope

- Set of feasible homology vectors = convex polytope in R^{2g+1}
 - Projection of the flow polytope into the homology subspace

Flow homology linear program

- Find a feasible homology vector $(\varphi_1, \varphi_2, ..., \varphi_{2g+1})$ that maximizes the flow value $\varphi_1 + \varphi_2 + \cdots + \varphi_{2g+1}$
- 2g+1 variables, but exponentially many constraints

Implicit linear programming

- We can solve this LP *implicitly* using two oracles:
 - ▷ *Membership*: Is $(\varphi_1, \varphi_2, ..., \varphi_{2g+1})$ feasible?
 - Separation: If not, find a violated constraint.
- We have an oracle that runs in $O(g^2 n \log^2 n)$ time!
- If all capacities are integers ≤ C, we can compute maximum flows using implicit linear programming methods:
 - ▷ Central-cut ellipsoid ⇒ O(g⁸ n log² n log² C) time. [Shor Nemirovsky Yudin '72] [Khachiyan '79] [Grötschel Lovász Schrijver '81, '93]
 - ▷ Random walk sampling $\Rightarrow O(g^6 n \log^2 n \log C)$ expected time. [Bertsimas Vempala '04]

Open questions

- Can we compute maximum flows on bounded-genus surface graphs in O(n log n) time?
 - > Open even for unit-capacity undirected graphs on the torus (g=1)!
- Can we compute minimum cuts or maximum flows in O(poly(g) n polylog n) time?
 - > Open even for unit-capacity undirected graphs on the torus (g=1)!
- Generalize to *minimum-cost* flows?
 - Current best is O(n² log n), even for undirected planar graphs!

Thank you!

"Blush" — prototype radiator design [Thorunn Arnadottir 2007]