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Elephant, Mick Burton (1969)



Der Mann mit dem Mundwerk, Paul Klee (1930)



Homotopy moves

1-0 2->0 3->3

» Theorem: Any closed curve in the plane can be simplified

using a finite number of homotopy moves.

[Steinitz 1916, Alexander 1926, Alexander Briggs 1927, Reidemeister 1927,
Grayson 1989, Angenent 1988, Angenent 1991]

How many?



Previous results

» 0(n2) homotopy moves are always sufficient

[Steinitz 1916, Griinbaum 1967; Francis 1971; Feo 1985; Truemper 1989; Vegter 1989;
Feo Provan 1993; Hass and Scott 1994; Nowik 2000; ...]

) Q(n) homotopy Moves are sometimes necessary
[trivial]



Steinitz's Theorem Steinitz 1976]

A graph is the 1-skeleton of a convex polytope in R3
if and only if it is planar and 3-connected.




Medial graph G* [Tait 1877 Steinitz 1916]

» Medial vertex for each edge of G

» Medial edge for each corner of G
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Medial graph G* [Tait 1877 Steinitz 1916]

» Medial vertex for each edge of G

» Medial edge for each corner of G



Steinitz's Lemma 1 Steinitz 1976]

Every 4-regular plane graph contains either
an empty monogon or a minimal bigon.

bigon minimal bigon



Steinitz's Lemma 1 Steinitz 1976]

Every 4-regular plane graph contains either
an empty monogon or a minimal bigon.

A As A

¥ig 1.

Abb. 175.

Spindel irreduzible Spindel



Steinitz's Lemma 2 Steinitz 1976]

Every non-empty minimal bigon contains at least two
triangular faces (one adjacent to each side).
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Steinitz's Lemma 2 [Steinitz 1916]

Every non-empty minimal bigon contains at least two
triangular faces (one adjacent to each side).

SO we can reduce any minimal bigon to an
empty bigon using 3-3 moves

Abb. 176. Abb. 178. Abb. 179. Abb. 180.



Steinitz’s Algorithm [Steinitz 1976]

» While there are vertices
> If there is an empty monogon, remove it with a 1-0 move

> Otherwise, empty any minimal bigon with 3-3 moves,
and then remove it with a 2-0 move
Ads 4

» O(n) moves per bigon = 0(n2) moves



Positive 323 moves [Feo Provan 1993]

The potential of a curve is the sum of its face depths.

If a curve has no empty mongons or empty bigons,
then some 3-3 move decreases its potential.




Feo and Provan's Algorithm [Feo Provan 1993

» While there are vertices
> If there is an empty monogon, perform a 1-0 move

> Else if there is an empty bigon, perform a 2-0 move

> Else perform any positive 3-3 move

» O(®) = O(n?) moves, where ® = potential = sum of face depths



NeW resu It [Chang Erickson 2018]

» Every closed curve in the plane with n vertices can be
simplified using O(n3/2) homotopy moves, and this bound is
tight in the worst case.

> Upper bound via new algorithm

> Lower bound via curve invariants



Planar Upper Bound



Shrinking loops

Any simple subloop can be removed using at most 3A
homotopy moves, where A is the number of interior faces.



Shrinking loops

Any simple subloop can be removed using at most 3A
homotopy moves, where A is the number of interior faces.

> If the loop contains any vertices, we can remove one vertex with one
0-2 move followed by one 3-3 move.
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> If the loop bounds any empty bigons, we can remove one edge (and
one empty bigon face) with one 2-0 move.

AN




Shrinking loops

Any simple subloop can be removed using at most 3A
homotopy moves, where A is the number of interior faces.

Contracting the loop decreases the sum of face depths by at
least A.



New slow algorithm

» While there are vertices, shrink any simple subloop.

» O(®) = O(n?) moves, where @ = potential







Tangle

» Intersection of curve with a generic closed disk
» Boundary-to-boundary paths called strands

» Face depths defined exactly as for curves.




Tightening tangles

Any tangle can be tightened in O(md + ms) moves, where
m = #vertices, d = max face depth, and s = #strands

» First remove all simple subloops in O(®) = O(md) moves.

» Then straighten all strands in O(ms) moves.




Tightening tangles

Any tangle can be tightened in O(md + ms) moves, where
m = #vertices, d = max face depth, and s = #strands

» First remove all simple subloops in O(®) = O(md) moves.

» Then straighten all strands in O(ms) moves.
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Useful tangles

We call a tangle useful it m = s2and d = O(m'/2)

> Can be tightened using O(md + ms) = 0(m3/2) moves

> Tightening removes at least half of the interior vertices




Useful tangles

Lemma: Every curve admits a useful tangle.

> Depth contours define a sequence of nested tangles
> Suppose ith tangle has m; vertices and s; strands

> It the first / tangles are all useless, then s;=i/2 and thus m; = i2/4




Useful tangles

Lemma: Every curve admits a useful tangle.

> Depth contours define a sequence of nested tangles
> Suppose ith tangle has m; vertices and s; strands

> It the first / tangles are all useless, then s;=i/2 and thus m; = i2/4




New faster algorithm

» While there are vertices, tighten any useful tangle

» Analysis:
> Tightening a useful tangle with m vertices takes O(m3/2) moves.
> Charge 0(m'/2)=0(n1/2) moves to each deleted vertex

> So removing all n vertices takes 0(n3/2) moves.



Planar Lower Bound



Defect [Aicardi 1994] [Arnold 1994]

» Unigue curve invariant that is zero for simple curves and
changes as follows under homotopy moves:

1-0 2—0 3—3

..................

» Simplifying any curve y requires at least |defect(y)/2|
homotopy moves.



Defect formula [Polyak 1998]

» defect = =2 34y sgn(x) sgn(y)
> X()y means vertices x and y are interlaced

> sgn(x) is Gauss' sign convention for vertex x. [Gauss ¢.1830]
> —2 is a historical artifact [Arnold 1994]




Flat torus knots
T(p,q)(0) := (cos(gh) + 2)(cos(p«9), sin(pb)
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Flat torus knots

T(p. q)(0) = (cos(gh) + 2)(cos(ph), sin(pb))
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Defects of flat torus knots

» defect(T(p,p+1)) =2 (P ; 1) = O(n%/?) [Even-Zohar et al. 2074]
» defect(T(g +1,q)) = —2(3) = —0(n%/?) [Hayashi et al. 2012]

» defect(T(p,ap + 1)) = 2a (p ; 1> = O(np)

» defect(T(ag+1,q)) = —2a <(3]> = —0(nq)

» defect(T(Fy+1, Fx)) = defect(T(Fx_1,Fx)) = (Fx — D(Fx — 2)/2 = O(n)



Open problem 1

» Previous O(n2)-move algorithms are monotone

> They never perform 0-2 or 0->1 moves

> So the number of vertices never increases.

» But our new O(n3/2)-move algorithm requires 0-2 moves
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» Can every n-vertex closed curve be simplified using O(n3/2)
non-increasing homotopy moves? Are Q(n2) moves
sometimes necessary? Something in between?




Conjecture 1

» Every loose tangle with no empty monogons or bigons
admits a 3-3 move that decreases the sum of face depths.

> This would improve Feo and Provan’s algorithm to O(n3/2) moves!



Conjecture 1

» Every loose tangle with no empty monogons or bigons
admits a 3-3 move that decreases the sum of face depths.

> This would improve Feo and Provan’s algorithm to O(n3/2) moves!

» Unfortunately, this conjecture is false!




Conjecture 2

» Every 4-regular plane graph has either an empty monogon
or a bigon containing O(n'/2) faces.

> This would immediately improve Steinitz’s algorithm to O(n3/2) moves!



Conjecture 2

» Every 4-regular plane graph has either an empty monogon
or a bigon containing O(n'/2) faces.

> This would immediately improve Steinitz’s algorithm to O(n3/2) moves!

» Unfortunately, this conjecture is also false!



Every loop and every bigon contains Q(n) faces.

“Fibonacci cube”



Every loop and every bigon contains Q(n) faces.

“Fibonacci cube”



“Fibonacci cube”

Every loop and every bigon contains Q(n) faces.



Electrical Reduction



Electrical transformations

Loop reduction Parallel reduction A=Y transformation
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Resistor network analysis [Kennelly 1899]
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» Resistor network analysis [kennelly 1899]
» AC circuit analysis [russell 1904]
» Shortest paths and maximum flows [akers 60]

» Network reliability estimation
[Lehman 63, Traldi 83, Chari Feo Provan 96, Truemper 02]

» Multicommodity flows [reo 85]

» Counting spanning trees, perfect matchings, and cuts
[Colbourn Provan Vertigan 95]

» Generalized Laplacian linear systems
[Gremban 96, Nakahara Takahashi 96]

» Circular planar networks
[Colin de Verdiere, Gitler, Vertigan 96, Curtis, Ingerman, Morrow 98]

» Kinematic analysis of articulated robots [staffelii Thomas 02]

» Flow estimation from noisy measurements [zohar Geiger 07]



Dual pairs

Degree-1 reduction Series-parallel reduction AY transformation

N }K N
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Electrical reduction [Steinitz 1916, Epifanov 1966]

Any planar graph can be reduced to a single vertex using a
finite number of electrical transformations.
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How many?
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Medial graph G* [Tait 1877 Steinitz 1916]

» Medial vertex for each edge of G

» Medial edge for each corner of G
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Medial electrical moves Steinitz 1976]
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Medial electrical moves Steinitz 1976]

Q- X




Medial electrical moves Steinitz 1976]
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Medial electrical moves Steinitz 1976]

Q- - X X Hy

Hey, these look familiar.
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Smoothing Lemma

Reducing any connected proper minor of G requires strictly
fewer electrical moves than reducing G.

[Truemper 1989, Gitler 1991]



Reduction Lemma

The minimum # electrical moves to reduce G is at [east the
minimum # homotopy moves to simplify G*.

» Proof: Replace the first 2-1 move with a 2-0 move,
then apply the minor lemma and induction.

[Noble Welsh 2000]



Electrical Lower Bound [Chang Erickson 2018]

For all k, the kx(2k—1) cylindrical grid graph requires Q(k3) =
()(n3/2) electrical moves to reduce.




Electrical Lower Bound [Chang Erickson 2018]

For all k, the kx(2k—1) cylindrical grid graph requires Q(k3) =
()(n3/2) electrical moves to reduce.

> Proof: Its medial graph is T(2k, 2k-1).




Higher-Genus Lower Bound



[Chang Erickson Letscher

Lower bou nd deMesmay Schleimer Sedgwick

Thurston Tillmann 2018]

» On any surface with genus>0, simplifying a contractible
curve requires Q(n?) homotopy moves in the worst case.

» Matches known O(n2) upper bound. [Hass Scott 1994][Steinitz 1917]

> Either the curve is already simple or it has a loop or a bigon.

» It suffices to consider the punctured plane % := R2\{o}, where
0 is an arbitrary point called the origin.



Defect?

» There are curves on the torus with defect Q(n?)

> ...but the examples we know are not contractible.

I\ N e
b \_b b
; N \\\\\\-‘3 ;

~— "~ "~ —~—
n/8 n/8 n/8 n/8



The bad curve

_______________________________________________________________________________________________________




Winding number

» wind(y, p) = number of times y winds ccw around p

> At points p not on vy, given by Alexander numbering:
[Meister 1770][Mdbius 1865][Alexander 1928]

> At vertices, average the winding numbers /
of all four incident faces




Winding Lemma

» Each 3»3 move changes the winding numbers of exactly
three vertices, each by exactly 1.

» 150 and 2-0 moves do not change the winding numbers of
any vertices.

1-0 20 353



Vertex types

» Consider a contractible closed curve yin 2.

» Smoothing y at any vertex x yields two curves y# and yx.

» Define type(x) := wind(y}, o)

» Vertices x and z are complementary if type(x) = —type(z).



Type Lemma

» No homotopy move changes the type of any vertex.
» Every 1-0 move deletes a vertex of type 0.

» Every 2-0 move deletes two complementary vertices.

o Yo
ol ! Yo



Vertex matching

............................................................................ Z

1 2 3 4 5 6 7 8 9 10 11 12 12 11 10 9 8 7 6 5 4 3 2 1

» Every homotopy that contracts the bad curve defines a
matching between complementary vertices.

» In every such matching for this curve, the ditferences of
winding numbers sum to Q(n?)



Vertex matching

1 2 3 4 5 6 7 8 9 10 11 12 12 11 10 9 8 7 6 5 4 3 2 1

» Every homotopy that contracts the bad curve defines a
matching between complementary vertices.

» In every such matching for this curve, the ditferences of
winding numbers sum to Q(n?)



Higher-Genus Upper Bound



ISRAEL JOURNAL OF MATHEMATICS, Vol. 51, Nos. 1-2, 1985

INTERSECTIONS OF CURVES ON SURFACES

BY

JOEL HASS* AND PETER SCOTT®
“Mathematics Department, University of Michigan, M1 48109, USA;
and *Department of Pure Mathematics, University of Liverpool,
P.0.Box 147, Liverpool L69 3BX, England

ABSTRACT
The authors consider curves on surfaces which have more intersections than the
least possible in their homotopy class.

THEOREM 1. Let f be a general position arc or loop on an orientable surface F
which is homotopic to an embedding but not embedded. Then there is an
embedded 1-gon or 2-gon on F bounded by part of the image of f.

THEOREM 2. Let f be a general position arc or loop on an orientable surface F
which has excess self-intersection. Then there is a singular 1-gon or 2-gon on F
bounded by part of the image of f.

Examples are given showing that analogous results for the case of two curves on
a surface do not hold except in the well-known special case when each curve is
simple.

Let C, and C, be simple closed curves on the annulus A. It is easy to show that
if C; and C, intersect and do so transversely, then there must be a 2-disc D in A
whose boundary is A; U A, where A; is a sub-arc of C;. We call such a disc a 2-gon
between C; and C,. If two simple closed curves C, and C, on a surface F
intersect transversely, we will say that C, and C; have excess intersection if one of
them can be homotoped so as to reduce the number of intersection points with
the other. The natural generalisation of the above result about two curves on the
annulus is that if C; and C; are simple closed curves on a surface F and if they
have excess intersection then there is a 2-gon between C,; and C,. This result is
fairly well known, but, for completeness, we give a proof at the start of §3.
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Let Cy, ..., C; be a system of closed curves on a triangulizable surface S. The
system 1is called minimally crossing if each curve C; has a minimal number of self-
intersections among all curves C; freely homotopic to C; and if each pair C;, C; has
a minimal number of intersections among all curve pairs C;, C} freely homotopic to
C;, C; respectively (i, j=1, .., k, i# j). The system is called regular if each point
traversed at least twice by these curves is traversed exactly twice, and forms a crossing,.

We show that we can make any regular system minimally crossing by applying
Reidemeister moves in such a way that at each move the number of crossings does
not increase. It implies a finite algorithm to make a given system of curves mini-
mally crossing by Reidemeister moves.  © 1997 Academic Press

1. INTRODUCTION AND FORMULATION OF THE THEOREM

Let S be a surface. A closed curve on S is a continuous function
C:S'— S (where S' is the unit circle in the complex plane). Two closed
curves C and C’ are freely homotopic, in notation: C ~ C’, if there exists a
continuous function @:S'x[0,1]—S such that &(z,0)=C(z) and
®(z,1)=C'(z) for all ze S".

In this paper, we consider the question of finding analogous results about the
intersection of two possibly singular loops on a surface and about the self-
intersection of a single loop. Various results in this area have been assumed to be
obvious by some authors. However, we give examples which demonstrate that
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Received June 19, 1984 The Netherlands.
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Tightening curves on surfaces

» A curve is tight if no homotopic curve has fewer vertices, and
loose otherwise.

tight

[Hass Scott 1994]



Tightening curves on surfaces

» A curve is tight if no homotopic curve has fewer vertices.

» Theorem: Any closed curve on any surface can be tightened

using a finite number of non-increasing homotopy moves.

[Grayson 1989] [Angenent 1988,1991] [Hass Scott 1994] [de Graff, Schrijver 1997]
[Paterson 2002]

» O(n?2) moves suffice for curves on the torus, or if the
tightened curve is simple [Hass Scott 1994]

» N00)20() moves suffice in general.

> Follows from counting 4-regular n-vertex genus-g surface maps.
[Bender Canfield 1986]



[Chang Erickson Letscher

N ew u p per bO un d deMesmay Schleimer Sedgwick

Thurston Tillmann 2018]

» Theorem: Any closed curve with n vertices on any orientable
surface can be tightened using O(n4) homotopy moves.




Steinitz doesn't WOI‘k [Hass Scott 1994]

» Non-minimal curves on surfaces do not necessarily contain
monogons or bigons.




Basic singular monogons [Hass Scott 1994]

» A singular monogon is a contractible subloop

» A singular monogon is basic if it lifts to an embedded loop in
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Basic singular bigons [Hass Scott 1994]

» A singular bigon is a homotopic pair of non-overlapping
subpaths

» A singular bigon is basic it it lifts to an embedded bigon in
the universal cover




[Steinitz 1916]

Steinitz aImOSt WOI‘kS [Hass Scott 1994]

» Lemma: Every loose curve on the sphere or the torus has
either an embedded loop or an embedded bigon.

» Lemma: Every loose curve on any orientable surface has
either a basic singular monogon or a basic singular bigon.




Steinitz still doesn't work

» Removing one face in a basic sungular bigon might add a
face somewhere elsel

<2




Steinitz still doesn't work

» Removing one face in a basic sungular bigon might add a
face somewhere elsel

2
§Av'/ 1 \
—




Tiling

» Let G be a triangulation of the
curvey.

» Choose any tree-cotree
decomposition (T, L, C) of G.

» Dual reduced cut locus X =
reduce((CUL)*)

» Universal cover X is a regular
trivalent tiling of 6g-gons




High-level strategy

» Repeat until the curve is in minimal position:

> Find a basic singular (monogon or) bigon ><> >Q
> Swap the bounding paths of 8 as follows:




Bigon “geometry”

» Curve v intersects X at most n times
» SO any basic singular bigon intersects X at most n times

» Discrete Gauss-Bonnet = interior of lifted bigon B contains
0(n) fragments of tiles in the tiling X.



Coarse homotopy [Dehn 1976]

» Move one boundary of the lifted bigon to the other using
O(n) “graph homotopy moves”:

~
face I spike
N\
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arc \m/ node W




Coarse homotopy [Dehn 1976]

» Move one boundary of the lifted bigon to the other using
O(n) “graph homotopy moves”:




Bubbles

» Cover 2 with open balls:

> Around each node
> Around portion of each arc outside the node bubbles

> Around subset of the face outside the node and arc bubbles

» We perform each “graph move” inside a bubble to avoid
interference with translates.




Inside bubbles

» Face bubble: <4n vertices \/

> doubled curve segments = quadrupled vertices

» Arc bubbles: O(n?) vertices each
> O(n) parallel “tracks” for translates of the moving frontier

> Crossed by O(n) curve segments

» Node bubbles: O(n?) vertices each
> Exchange between three incident sets of tracks




Graph moves

» Face move = 0(n) homotopy moves
» Spike move = 0(n?) homotopy moves
» Arc move = 0(n2) homotopy moves

» Vertex move = 0(n?) homotopy moves

-
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Theorem

Any closed curve with n vertices, on any orientable surface,
can be tightened using O(n4) homotopy moves.

> To simplify the curve, we need to resolve O(n) singular bigons.
> We resolve each singular bigon using O(n) graph moves.
> We implement each graph move using 0(n2) homotopy moves.




Improvements

» Theorem: Any closed curve with n vertices, on any orientable
surface with genus g, can be tightened using O(gn3log2n)
homotopy moves.

> Choose a coarse homotopy with small homotopy height.
[Har-Peled Nayyeri Salavatipour Sidiropulos 2016]

» Theorem: Any closed curve with n vertices, on any orientable
surface with genus g and b>0 boundaries, can be tightened
using O((g+b)n3) homotopy moves.

> Use a greedy system of arcs instead of a reduced cut graph.
> Dual of the universal-cover tiling is a tree.



Open problems

» What about non-orientable surfaces?

> There may be no singular monogons or bigons.

> O(n?2) moves suffice in the projective plane or Mobius band.
- Can we improve projective plane to 0(n3/2)?
> No other nontrivial upper bounds known.

» What about multicurves?

> No nontrivial upper bounds known (with small exceptions).

» What about monotone homotopy?

> No nontrivial upper bounds known (with small exceptions).

- But Arnaud and Hsien are getting close!



Summary

Surface O() Q()

Sphere or plane n3/2 n3/2

Projective plane n2 n3/2
Sphere with holes n2 n2
Torus n2 n2
Orientable, simple curve n2 n2
Orientable w/bdry n3 n2
Orientable w/o bdry n3log2n n2
Nonorientable exp(n) n2




Thank you!

Twisting, overlapping coloring of Haken’s Gordian Knot, Mick Burton (2015)



