Algorithms In
Topology



Today’s Plan:

Review the history and approaches to two fundamental
problems:

Unknotting

Manifold Recognition and Classification



What are knots?

Knots are closed loops 1in R3, up to 1sotopy

Embedding Projection



What are knots?
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We can study smooth or polygonal knots. These give equivalent
theories, but polygonal knots are more natural for computation.




What are knots?

Knots are closed loops 1n space, up to 1sotopy
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We can study smooth or polygonal knots. These give equivalent
theories, but polygonal knots are more natural for computation.

For algorithmic purposes, we can explicitly describe a knot as a
polygon in Z3.

K ={(0,0,0), (1,2,0), (2,3,8), ..., (0,0,0)}

We can also use several equivalent descriptions.



Some Basic Questions
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Can we classify knots?

Can we recognize a particular knot, such as the unknot?

How hard is it to recognize a knot?

Does topology say something new about complexity classes?

Do undecidable problems arise in the study of knots and 3-
manifolds.

Does the study of topological and geometric algorithms lead to new
insight into classical problems? (lsoperimetric inequalities, P=NP?
NP=coNP?)




Basic Questions about Manifolds

e Can we classify manifolds?

e Can we recognize a particular manifold, such as the sphere?

e How hard is it to recognize a manifold? (What is the
complexity of an algorithm)

 What undecidable problems arise in the study of knots and 3-
manifolds?

e Does the study of topological and geometric algorithms lead
to new insight into classical problems? (Isoperimetric
inequalities, P=NP? NP=coNP?)



Describing Surfaces and 3-Manifolds

What type of surfaces and manifolds do we consider?
There are three main categories to choose from:

Smooth

Piecewise Linear

Continuous




Describing Surfaces and 3-Manifolds

The continuous theory allows for more pathological examples.

For algorithms, Piecewise Linear manifolds give the most natural setting



Describing Surfaces and 3-Manifolds

Piecewise Linear

A manifold is described as a triangulation, or a simplicial complex.

Simplicial complex: A collection of simplices satistying:

Every face of a simplex from K 1s also in K
. The intersection of any two simplices in K 1s a face of each.

A‘ PL n-Manifold: A simplicial complex satisfying properties

‘ ' that ensure it 1s locally homeomorphic to Rn.
( ‘ The link of every face 1s a sphere of appropriate dimension.

Note: This 1s one motivation for the problem of determining
whether a given simplicial complex (the link) 1s a sphere.


https://en.wikipedia.org/wiki/Simplex#Elements
https://en.wikipedia.org/wiki/Set_intersection

Can we recognize and classify knots?




Can we recognize and classify knots?

Knots can be drawn in different ways.
How can we tell, systematically, if two diagrams give the same knot?



Are these knots the same?




Even unknots can be drawn in deceiving ways

=



gnize Unknots

Hard to Reco




Hard to Recognize Unknots




Hard to Recognize Unknots
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Another Haken Unknot



Some basic decision Problems for Knots and Links

Problem: UNKNOTTING
Instance: A knot K 1n S3.
Question: Is K unknotted?

Problem: SPLIT LINK
Instance: A link L in S3 with complement M;.
Question: Does M) contain a 2-sphere that separates the components of L?

Problem: KNOT GENUS
Instance: A knot K in S3 and an integer g.
Question: Does K bound a surface of genus at most g?

Problem: KNOT RECOGNITION
Instance: A pair of knots K; and K> 1n S3.
Question: Are K; and K> equivalent knots?

Haken’s approach gives algorithms for each of these.



Some basic decision Problems for Knots and Links

Problem: UNKNOTTING
Instance: A knot K 1n S3.
Question: Is K unknotted?

Problem: SPLIT LINK
Instance: A link L 1n S3 with complement M;.
Question: Does M) contain a 2-sphere that separates the components of L?

Problem: KNOT GENUS
Instance: A knot K in S3 and an integer g.
Question: Does K bound a surface of genus at most g?

Problem: KNOT RECOGNITION
Instance: A pair of knots K; and K> 1n S3.
Question: Are K; and K equivalent knots?

Haken’s approach gives algorithms for each of these.

But not for everything. For example, we don’t have an algorithm for:

Problem: UNKNOTTING NUMBER A 5
Instance: A knot K 1n S3 and an integer n.
Question: Does K have unknotting number at most n? e




Some history

UNKNOTTING has historical connections to the
foundations of theoretical computer science.

Max Dehn (1878 - 1952)
Wrote one of the first topology books (1907)

Proposed the search for a procedure to determine
if a curve 1s knotted (1910).

This predated the definition of an algorithm.




In 1961 Haken published a proof of the UNKNOTTING problem

It took about 50 years to find. (Dehn 1910 to Haken 1961)

Theorem (Haken) There 1s an algorithmic procedure to
1. Recognize the Unknot

2. Classify knots

3. Compute the genus of a knot

4. Determine 1f a link 1s split

We will look at the 1deas he used to prove this theorem.

We will also look at the running times of such algorithms.
How practical are they?

21



Turing machines specify algorithms

An algorithm 1s a procedure to solve a class of problems

i
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This is made precise using the 1dea of a Turing machine

Formal definition:

M

M
Q

)

Turing Machine Symbols

The symbolic definition of a Standard Turing Maching is:

=(()9z SF’S 7(]0 ’BQF)

stands for the Turing Machine.

is a set of states within the Turing Machine.

is called the input alphabet. This is a set of symbols that the
Turing Machine will be working with. The input alphabet includces
all of the characters in the tape alphabet except B.

is called the tape alphabet.The tape alphabet are the set of symbols
that appear on the (ape, including B.

is the trangition function. & isdefinedas Q x I' = Q@ x T x {L,R}

This mcans that when the rcad head cncounters a symbol on the tapce, it

can change state, write a symbol on the tape and move either left L, or right R.
The x symbol in the formula means that all of the clements from cach sct is used.
This is called the Cartesian Product.

is a blank symbol.

is the initial, or starting statc.

is a set of final states. Figure 2




How can we think about an algorithm?

An algorithm i1s an unambiguous procedure to solve a class of problems.

We focus on algorithms for “decision problems”

A decision problem formulates a yes-no question for an input value

GRAPH 3-COLOR
Instance: A graph.
Question: Can the graph be 3-colored?

PRIME
Examples Instance: An integer.
Question: Is the integer prime?

SAT

Instance: A boolean expression.

Question: Is there a truth assignment to the variables
which makes the expression true?


https://en.wikipedia.org/wiki/Yes-no_question

What is an algorithm?

A decision problem gives a yes-no question for an input value.

GRAPH 3-COLOR
Instance: A graph G.
Question: Can G be 3-colored?



https://en.wikipedia.org/wiki/Yes-no_question

What is an algorithm?

A decision problem gives a yes-no question for an input value

GRAPH 3-COLOR
Instance: A graph G.
Question: Can G be 3-colored?

i



https://en.wikipedia.org/wiki/Yes-no_question

What 1s an algorithm?

A decision problem formulates a yes-no question for an input value

PRIME
Instance: An integer K
Question: Is K prime?

1003047282 0909643626 9999457312 5637852723 4362147276 6640900005 5271790903 5637310037

1003047282 0909643626 9999457312 5637852723 4362147276 6640900005 5271790903 5637310039


https://en.wikipedia.org/wiki/Yes-no_question

What 1s an algorithm?

A decision problem formulates a yes-no question for an input value

PRIME
Instance: An integer K
Question: Is K prime?

1003047282 0909643626 9999457312 5637852723 4362147276 6640900005 5271790903 5637310037
YES

1003047282 0909643626 9999457312 5637852723 4362147276 6640900005 5271790903 5637310039

NO


https://en.wikipedia.org/wiki/Yes-no_question

What is an algorithm?

A decision problem gives a yes-no question for an input value

SATISFIABILITY (SAT)
Instance: A Boolean Expression.
Question: Is there a truth assignment that satisfies the expression?

(—IX1 VvV X2 V —|y3) A (—IX1 V 1 X2 V y3) A (X1 VvV X2 V y3) A (X1 V 1 X2 V —uy3)


https://en.wikipedia.org/wiki/Yes-no_question

What is an algorithm?

A decision problem gives a yes-no question for an input value

SATISFIABILITY (SAT)
Instance: A Boolean Expression.
Question: Is there a truth assignment that satisfies the expression?

(—IX1 vV X2 V —uy3) A (—IX1 vV X2 Vv y3) A (X1 vV X2 V y3) A (X1 vV X2 VvV —uy3)

Set x; = False, x»=True, y;=False.
Then each clause evaluates to True, as does the whole boolean expression.

For example, the second clause (—x1 v =2 v y3) 1s True because —x; 1s True.


https://en.wikipedia.org/wiki/Yes-no_question

Dehn’s Idea: Transform UNKNOTTING into an algorithmic
problem in algebra.

Look at the knot group - the fundamental group of the
knot complement. This is easy to describe with generators
and relations.

Dehn's Lemma (Proved by Papakyriakopoulos 1957).
A knot is trivial if and only if its group is infinite cyclic.




Dehn’s Idea: Transform UNKNOTTING into an algorithmic

problem in algebra

Look at the knot group - the fundamental group of the
knot complement. This is easy to describe with generators
and relations.

Dehn's Lemma (Proved by Papakyriakopoulos 1957).
A knot is trivial if and only if its group is infinite cyclic.

Unknotting reduces to:
Question: Is the knot group isomorphic to the infinite
cyclic group?



Dehn’s Idea: Transform UNKNOTTING into an algorithmic

problem in algebra
Look at the knot group - the fundamental group of the

knot complement. This is easy to describe with generators
and relations.

Dehn's Lemma (Proved by Papakyriakopoulos 1957).
A knot is trivial if and only if its group is infinite cyclic.

Unknotting reduces to:

Question: Is the knot group isomorphic to the infinite
cyclic group?

Can we determine if a finitely presented group is 1somorphic to the
infinite cyclic group?



Dehn’s Idea: Transform UNKNOTTING into an algorithmic

problem in algebra

Look at the knot group - the fundamental group of the
knot complement. This is easy to describe with generators
and relations.

Dehn's Lemma (Proved by Papakyriakopoulos 1957).
A knot is trivial if and only if its group is infinite cyclic.

Unknotting reduces to:
Question: Is the knot group isomorphic to the infinite
cyclic group?

Can we determine if a finitely presented group is 1somorphic to the
infinite cyclic group?

No (Not in general - though yes for certain classes of groups)



Dehn formulated some basic decision problems for groups

The WORD PROBLEM

The ISOMORPHISM PROBLEM
The TRIVIALITY PROBLEM

The CONJUGACY PROBLEM

Dehn solved some of these for special groups
(free groups, surface groups).

Such decision problems for finitely presented groups are undecidable.
No algorithm exists! (1950°s Novikov, Boone)

These were among the first undecidable problems found in mathematics.



Basic decision problems for groups

WORD PROBLEM

Instance: A finitely presented group G =<g;, €2, ..., €m V1,12, ...
and a word w in G.

Question: Does w represent the trivial word in G?

TRIVIALITY PROBLEM

Instance: A finitely presented group G =<gy, g2, ..., 8m 71,72, ...
Question: Is G isomorphic to the trivial group?

ISOMORPHISM PROBLEM

Instance: Two finitely presented groups G and H.
Question: Is G isomorphic to H?

Each of these problems 1s undecidable!
(Cantor, Hilbert, Godel, Turing 1950, Markov 1951, Novikov 1955,
Adian 1955, Boone 1958, Rabin 1958)

No algorithm exists that will solve them for general groups.



Two Consequences of Undecidability of TRIVIALITY

TRIVIALITY
Instance: A finitely presented group G =<gi, g2, ..., 8m V1, 2, oo, In>.
Question: Is G isomorphic to the trivial group?

Theorem (Markov 1958)
n-MANIFOLD RECOGNITION is undecidable for n > 4.

There 1s no algorithm to decide if two closed 4-dimensional manifolds are

homeomorphic.

Theorem (Novikov ~1959)
n-SPHERE RECOGNITION is undecidable for n > 5.

There 1s no algorithm to decide if a closed S-dimensional manifold 1s S>.



4-Manifold Recognition is Undecidable

Theorem (Markov 1958)
n-MANIFOLD RECOGNITION is undecidable for n > 4.

Proof: We show that an algorithm to recognize 4-manifolds implies an

algorithm to solve the problem of whether a given group presentation
represents the trivial group, TRIVIALITY. The latter problem is among

those known to be undecidable.

We reduce
TRIVIALITY

to
4-MANIFOLD RECOGNITION.

1. Start with a presentation G =<gy, g2, ..., Gu, V1, 12, «o. , ¥n >

2. Construct a 4-dimensional manifold M with the property that
M 1s diffeomorphic to #, S2x S2 < G 1s 1somorphic to the trivial group.



Handles (5-dimensional Morse Theory)

Morse Theory shows us how to build manifolds using 1-handles and
2-handles whose fundamental group is isomorphic to a given group
presentation.

1-handle: D' x D4, attached along oD x D4, or S0 x D4

2-handle: D2 x D3, attached along dD2 x D3, or S x D3



Handles (5-dimensional Morse Theory)

Morse Theory shows us how to build manifolds using 1-handles and
2-handles whose fundamental group is isomorphic to a given group
presentation.

For 5D handles, take these 3D
pictures and take a product of the
second factor with D2

2-handle: D2 x D3, attached along dD2 x D3, or S x D3



Smooth manifolds are built with handles

Morse Theory shows us how to build manifolds using 1-handles and
2-handles whose fundamental group is isomorphic to a given group
with a finite presentation.




Smooth manifolds are built from handles

Morse Theory shows us how to build manifolds using 1-handles and
2-handles whose fundamental group is isomorphic to a given group
presentation.

>

Start with a 0-handle (B%) and add one 1-handle for each generator
and one 2-handle for each relation.




Smooth manifolds are built from handles

Morse Theory shows us how to build manifolds using 1-handles and
2-handles whose fundamental group is isomorphic to a given group
presentation.

G=<g1,82, .. 8m;,V,F2, ..., rn>

Start with a 0-handle (B®) and add one 1-handle for each generator
and one 2-handle for each relation. ——




Canceling Handles

A 1-handle and a 2-handle cancel each other if the attaching curve of the
2-handle runs once over the 1-handle.



Canceling Handles

A 1-handle and a 2-handle cancel each other if the attaching curve of the
2-handle runs once over the 1-handle.

A 1-handle and a 2-handle cancel each other if the attaching curve of the
2-handle can be isotoped (deformed through embedding) to run once over the 1-handle.

In dimensions 4 and above, homotopy and isotopy of curves are the same.



Important Example - S2xS2

Start with a 5-dimensional ball B3. Its boundary 1s a 4-sphere S4.

Attaching n 2-handles to BS gives a manifold W diffeomorphic to #,.5%2xB3.

S2xBs3

S4

one 2-handle Four 2-handles
Attaching n trivial 2-handles to B® gives a manifold whose boundary is
diffeomorphic to #, S2xS=.

There is only one way to attach a 2-handle to B>, since all curves in $4
are isotopic.



4-Manifold Recognition is Undecidable

Proof. We show that an algorithm to recognize 4-manifolds implies

that there is an algorithm to solve the problem of whether a given
presentation represents the trivial group, TRIVIALITY. But the latter

IS known to be undecidable.

We reduce TRIVIALITY to 4-MANIFOLD RECOGNITION.

1. Start with a presentation G =<g;, g2, ..., 8m V1,12, cc., 0>

2. Construct a 5-dimensional manifold W> with (W) = G as follows:



4-Manifold Recognition is Undecidable

Proof.: Reduce TRIVIALITY to 4-MANIFOLD RECOGNITION.

1. Start with a presentation G =<g;, g2, ..., 8m, Vi, 2, ..., n>
2. Construct a 5-dimensional manifold W?> as follows:

a. Take the 5 ball B>. Its boundary 1s S4.




4-Manifold Recognition is Undecidable

Proof.: Reduce TRIVIALITY to 4-MANIFOLD RECOGNITION.

1. Start with a presentation G =<g;, g2, ..., 8m, Vi, 2, ..., n>

®

2. Construct a 5-dimensional manifold W> as follows: '
a. Take the 5 ball B>. Its boundary 1s S4.

b. Add m 1-handles.
Boundary is now #,, 52x52



4-Manifold Recognition is Undecidable

Proof. Reduce TRIVIALITY to 4-MANIFOLD RECOGNITION.

1. Start with a presentation G = <gj, 22, ..., 8@m, V1,72, ..., 0>
2. Construct a 5-dimensional manifold W> as follows:

a. Take the 5 ball B>.Its boundary is S4.

b. Add m 1-handles.
Boundary is now #,, 52x52

¢. Add n 2-handles. Attach them so they follow the presentation given for G.
Now have a 5-manifold W with fundamental group G. Its boundary 1s some

complicated 4-manifold.



Claim. The boundary of W, aW, is a 4-manifold with
the same fundamental group as W.

C-.cf)\,—a~ O’Q

Proof. There is enough room in
five dimensions to push curves
and curve homotopies to dlV. A
homotopy of a curve is 2-
dimensional. In 5 dimensions the
homotopy can be made to miss
the 1-dimensional core of a 1-
handle and the 2-dimensional
core of a 2-handle. Thus curves
and curve homotopies can be
pushed out to olWV.

JB\V' \g\jff‘a/y

. . C_o\avve_
In codimension 3, curves and surfaces can be pushed to oW



4-Manifold Recognition is Undecidable

Proof: Reduce TRIVIALITY to 4-MANIFOLD RECOGNITION.
1. Start with a presentation G =<g;, g2, ..., 8m, V1, 12, ..., n>

2. Construct a 5-dimensional manifold W> as follows:

a. Start with the 5 ball B>.Its boundary is S4.

b. Add m 1-handles.

oW

¢. Add n 2-handles. Now have a 5-manifold W with fundamental group G.

d. The boundary of W is a 4-manifold with the same fundamental group as W.



e. Add an additional m trivial 2-handles to get W’
W’ is the connect sum of W with S2xB3’s.

mi(W) = m(W’) = G, does not change.

Let M be the boundary of this 5-manifold.
mi(M) = mi(W’) = G.

Theorem (Markov, 1958)
M is diffeomorphic to #, S2xS2 & @G is the trivial group



e. Add an additional m trivial 2-handles.
W is the connect sum of W with S2xB3’s.

mi(W) = m(W’) = G, does not change.

Let M be the boundary of this 5-manifold.
mi(M) = mi(W’) = G.

Theorem (Markov, 1958)
M is diffeomorphic to #, S2xS2 & @G is the trivial group

Proof: = Immediate, since mi(#, S2xS2) = 1.



m 1-handles
Theorem

M is diffeomorphic to #, S2xS2
& @G is the trivial group

Proof:

=

We know from the construction that /(M) = m:(W’) = G.
So m1(M) = 1, and so all curves are homotopic and isotopic in M.
So all 2-handle attaching curves are isotopic in M.

cancel, the m (blue) 1-handles.

Then the n (red) 2-handles are being attached to an S# and are isotopic to n trivial
2-handles.

Attaching n trivial 2-handles (red) to S4 gives a manifold M that is diffeomorphic to
#, S2xS2.

Corollary (Markov) 4-Manifold Recognition is Undecidable

Proof. Since we can’t algorithmically decide if G is the trivial
group, no algorithm will tell us if M is diffeomorphic to #,52xS2.



Corollary (Markov) 4-Manifold Recognition is Undecidable

What Other Problems are Undecidable?

Perhaps most topology problems? Your thesis problem?



Corollary (Markov) 4-Manifold Recognition is Undecidable

What Other Problems are Undecidable?

Perhaps most topology problems? Your thesis problem?

Haken’s results come right on the tail of these undecidabillity results
and indicate that three manifold questions seem to have algorithmic
solutions. This leads to a general idea that algorithm obstacles are

closely related to dimension.

Dimension 1 and 2: Fast algorithms generally exist.
Dimension 3: Algorithms generally exist, but could be exponential.

Dimension 4 and above: Many problems are undecidable.




Now to Dimension Three

So far, Haken’s approach seems to have the most widespread
applicability to 3-manifolds problems.

But there are many appealing approaches that seem to be
plausible for UNKNOTTING.



Other Approaches to Unknotting

1. Geometric structures

Thurston (1978): Knot complements have geometric
structures.

Perelman (2003) 3-manifolds have geometric structures.

Sela (1995): There 1s an algorithm to determine if two
geometric 3-manifolds are homeomorphic.

Sela’s approach reduces to determining 1f two hyperbolic
groups are 1isomorphic. (More general than determining 1f
two 3-manifold groups are isomorphic.)

The running time of such algorithms seems to involve towers
of exponentials. '




Approach to Unknotting 2: Knot invariants

Alexander Polynomial (1920)

There are non-trivial knots with trivial Alexander Polynomuaal.
Jones Polynomial (1984)

It 1s not known if V(K) = 1 only when K 1s unknotted.

There are distinct knots with the same Jones polynomial.



Approach to Unknotting 2: Knot invariants

Alexander Polynomial (1920)

There are non-trivial knots with trivial Alexander Polynomuaal.
Jones Polynomial (1984)

It 1s not known if V(K) = 1 only when K 1s unknotted.

There are distinct knots with the same Jones polynomial.

Other knot invariants can distinguish the unknot:

1. Knot Floer Homology (2004, Ozsvath and Szabo)

2. A—polynomial (2004, Boyer and Zhang, Dunfield and Garoufalidis)
3. Khovanov Homology (2011, Kronheimer and Mrowka)

But -
1. Can be hard to compute
2. Relation to 3-manifold theory 1s unclear.

The Normal Surface approach we will look at to detect unknots appears to be
a. Easier to compute.

b. Can recognize all knots - gives a classification of knots.

c. Widely applicable for many 3-manifold problems.



Approach 3: 3-page books

(I. Dynnikov) Knots are represented as curves on
a book with three pages.

Some Moves:

Replace the red pair of
_—arcs with the blue pair.

Simplity:

Contract the arc connecting the
rightmost pair of points.

Two less points on central line.




Approach 3: 3-page books

Knots are represented as curves on a book with
three pages.

Theorem (Dynnikov 1999)
This gives an unknotting algorithm.

This 1s one of several approaches implemented 1n software.

Book Knot Simplifier
Andreeva, Dynnikov, Koval, Polthier, Taimanov

Knot Simplifier web service
http://www.javaview.de/services/knots



Approach 4: Diagrams

S

The study of knot diagrams - planar curves with choices of over and
under-crossings, 1s an interesting subject of 1ts own. Can we work
directly with diagrams, manipulating them to simplify unnecessary
crossings?



Knot and Link Diagrams

The study of knot diagrams - planar curves with choices of over
and under-crossings, is an interesting subject of its own.



Direct approach to Unknotting: Simplify Knot Diagrams

AR

Can we find a way to change an n-crossing unknot diagram to a
trivial diagram?



Diagrams can be changed using
Reidemeister moves, without changing
the knot they represent.




R

Relidemeilster moves




R

Relidemeilster moves




Relidemeilster moves




Relidemeilster moves




Relidemeilster moves




Relidemeilster moves




Relidemeilster moves

R3

>



Relidemeilster moves

R3

>



Relidemeilster moves




Reidemeister Moves

Theorem (Reidemeister, Alexander-Briggs, 1926)
Two diagrams representing the same knot are connected
by a sequence of these three moves.
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Reidemeister Moves

Theorem (Reidemeister, Alexander-Briggs, 1926)
Two diagrams representing the same knot are connected by a sequence of these three

moves.
9 /'\ \\
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Reidemeister Moves

Theorem (Reidemeister, Alexander-Briggs, 1926)
Two diagrams representing the same knot are connected by a sequence of these three

MOVeS. B
5 =i X
w ,

b e B
F Sl \___\/

Typel

Iype 111
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Using Reidemeister moves for UNKNOTTING

Given an unknot diagram with n crossings, can we get an upper
bound on how many Reidemeister moves are needed to trivialize it?



Using Reidemeister moves for UNKNOTTING

Given an unknot diagram with n crossings, how many Reidemeister
moves are needed to trivialize it?

Can we find a function U(n) such that any unknot diagram with »
crossings can be transformed to the trivial diagram by at most U(n)
Reidemeister moves?

If yes, we have an algorithm. Just try all possible sequences of up
to U(n) Reidemeister moves and see if any give a trivial diagram.



Upper Bounds

What can we find on the internet?

LEARN HOW TO

UN KN OT From jewelerysecrets.com:
- ' "j«’ .é/!;

0y, ) S “It’s Not Difficult to get Rid of a Knot!
o s A ;g j 7/ e y . . . ’
= N8I s It's just time consuming ...

"IN 3EASY
STEPS!


http://jewelerysecrets.com

Upper Bounds

To get an upper bound, unknot with Reidemester moves and count.

From jewelerysecrets.com:

“It’s Not Difficult to get Rid of a Knot!
It’s just time consuming ...”

1N 3Easy
e

STEPS!

1) Lay the Chain Flat
2) Use Two Sewing Pins
3) Wiggle the Knot out

HOW TO UNKNOT A CHAIN | dr'/ © JEIELRY SECRETS
;") a]""
4
CO0f RGo.. [N
= Q&.}L ‘Kg{}: ;{}'
\5"( Oy
EASY AS 1.. 2.. 3.



http://jewelerysecrets.com

Upper Bounds

To get an upper bound, unknot with Reidemester moves and count.

LEARN HOW TO

UN KNOT From jewelerysecrets.com:

ot aa “It's Not Difficult to get Rid of a Knot!

. It’s just time consuming ...”
'.;'«J&gL QL

IN 3 EASY
Q¢ STEPS!

1) Lay the Chain Flat (project the knot to the plane)
2) Use Two Sewing Pins (make the projection regular)
3) Wiggle the Knot out (use Reidemeister moves to unknot)
« ©JEIUELRY SECRETS
HOW TO UNKNOT A CHAIN ﬁ\t} ﬁk/
Py LA \‘;7 f 'f)kj Py
r— ﬁﬁg A "‘)s’ S Vet v
)\g,?« = 9,3’;&}: N
3" 8
EASYAS 1... 2. 3...



http://jewelerysecrets.com

Upper Bounds

To get an upper bound, unknot with Reidemester moves and count.

LEARN HOW TO

UN KNOT From jewelerysecrets.com:

Ly 2 “It’s Not Difficult to get Rid of a Knot!
£k '. ey It’s just time consuming ...”
Y& ,J&&”Z;[

N SEASY
W STEPS!

1) Lay the Chain Flat (project the knot to the plane)
2) Use Two Sewing Pins (make the projection regular)
3) Wiggle the Knot out (use Reidemeister moves to unknot)
o ©JEIUELRY SECRETS
HOW TO UNKNOT A CHAIN ;Ev\ ,]"«‘k/
\‘;7'.‘;. I o
f‘ﬁ —_ ?)}f e U0
’\%g" k-k?&;&
EASYAS 1... 2. 3...

We will follow this advice.


http://jewelerysecrets.com

Using Reidemeister moves for UNKNOTTING

Given an unknot diagram with n crossings, how many Reidemeister
moves are needed to trivialize it?

Can we find a function U(n) such that any unknot diagram with n
crossings can be transformed to the trivial diagram by at most U(n)

Reidemeister moves?

If yes, we have an algorithm. Just try all possible sequences of up
to U(n) Reidemeister moves and see 1f any give a trivial diagram.

How many do we need?
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First bound: Need at least n/2 since each move reduces crossings by
at most 2.



Using Reidemeister moves for UNKNOTTING

Given an unknot diagram with n crossings, how many Reidemeister
moves are needed to trivialize it?

Can we find a function U(n) such that any unknot diagram with n
crossings can be transtformed to the trivial diagram by at most U(n)
Reidemeister moves?

If yes, we have an algorithm. Just try all possible sequences of up
to U(n) Reidemeister moves and see 1f any give a trivial diagram.

First bound: Need at least n/2 since each move reduces crossings by
at most 2.
Some unknots with n crossings require n Reidemeister moves

to trivialize:

y\;/b/‘..-?/\\/\\_/;) - C<\i\/§/g > C‘<:/:/J—>(‘/:/Q_,¢f__, O
il | RI | [RI] [mi] [Ri]
n twists



Using Reidemeister moves for UNKNOTTING

Given an unknot diagram with n crossings, how many Reidemeister
moves are needed to trivialize it?

Can we find a function U(n) such that any unknot diagram with n
crossings can be transtformed to the trivial diagram by at most U(n)
Reidemeister moves?

If yes, we have an algorithm. Just try all possible sequences of up
to U(n) Reidemeister moves and see 1f any give a trivial diagram.

First bound: Need at least n/2 since each move reduces crossings by
at most 2.
Some unknots with n crossings require n Reidemeister moves

to trivialize:

C(S/\\/C/}/\_/J — C<\J\~/3/J-’ c<:/:/g_. \/Q_N;A,g_.o
i RI | (Rt]  [R] [R]

n twists

This unknotting sequence monotonically reduces crossing number.



Using Reidemeister moves for UNKNOTTING 5

Some unknot diagrams require that the crossing number
increase as they are transformed to the trivial diagram by
Reidemeister moves.

QIR
N _ X



Using Reidemeister moves for UNKNOTTING 5

Some unknot diagrams require that the crossing number
increase as they are transformed to the trivial diagram by
Reidemeister moves.

@ @ /w

Question Can we enlarge the set of moves to
allow for monotone descent in crossing number?



A possible extra move: Flype

A flype

Can we extend Reidemeister moves of types 1, 2 and 3, adding moves
of type 4,5, ... N so that together with Reidemeister moves we get
monotone descent for the number of crossings?

Not known 1f we can do this. If yes, we would have a fast algorithm.



Possible new moves: Flype Moves

Flypes are good at messing up puppets.



R

Possible new moves

Petronio-Zanellat1 2016: Suggested 4 new moves.

Move 7

Windows software at http://www.zanellati.it/knot/index.htm

There is no proof that this method always works.

In practice, this and other methods (Regina (Burton), Snappea (Weeks, Culler,
Dunfield), ...) work surprisingly well. They can handle many diagrams with several

hundred crossings.

Question. Is there a simple method for unknotting that we have missed?



Bounding the number of required Reidemeister moves

QAR
C

How many Reidemeister moves are needed to change an n-
crossing unknot diagram to a trivial diagram?



Upper Bounds o

Find U(n) so that: The number of Reidemeister moves needed to

change an n-crossing unknot diagram to a trivial diagram 1s at most
Un).

A bound on U(n) implies an unknotting algorithm.

Namely try all sequences of up to U(n) Reidemeister moves.

Haken’s method implies bounds

Theorem H-Lagarias, 2001

Recently there was a major improvement. The bound was improved
from exponential to polynomaial.

Theorem Lackenby 2012
Un) < (231n)l



Upper Bounds

The complex of Unknot Diagrams

What properties does this graph have?
U(n) = maximal distance of an n-crossing diagram to O.

&



