
Algorithms in 
Topology



Today’s Plan:

Review the history and approaches to two fundamental 
problems:

Unknotting 

Manifold Recognition and Classification



Knots are closed loops in R3, up to isotopy

What are knots?

ProjectionEmbedding



We can study smooth or polygonal knots. These give equivalent 
theories, but polygonal knots are more natural for computation.

What are knots?



We can study smooth or polygonal knots. These give equivalent 
theories, but polygonal knots are more natural for computation.

What are knots?

For algorithmic purposes, we can explicitly describe a knot as a 
polygon in Z3.  


K = {(0,0,0), (1,2,0), (2,3,8),  ... , (0,0,0)}


We can also use several equivalent descriptions.

Knots are closed loops in space, up to isotopy



• Can we classify knots?

• Can we recognize a particular knot, such as the unknot?

• How hard is it to recognize a knot?

• Does topology say something new about complexity classes?

• Do undecidable problems arise in the study of knots and 3-

manifolds.

• Does the study of topological and geometric algorithms lead to new 

insight into classical problems?  (Isoperimetric inequalities, P=NP?  
NP=coNP?)

Some Basic Questions



Basic Questions about Manifolds

• Can we classify manifolds?

• Can we recognize a particular manifold, such as the sphere?

• How hard is it to recognize a manifold?  (What is the 

complexity of an algorithm)

• What undecidable problems arise in the study of knots and 3-

manifolds?

• Does the study of topological and geometric algorithms lead 

to new insight into classical problems? (Isoperimetric 
inequalities, P=NP?  NP=coNP?)



Describing Surfaces and 3-Manifolds
What type of surfaces and manifolds do we consider?   

There are three main categories to choose from:

Piecewise Linear

Smooth

Continuous



Describing Surfaces and 3-Manifolds

The continuous theory allows for more pathological examples.
For algorithms, Piecewise Linear manifolds give the most natural setting 



Describing Surfaces and 3-Manifolds

Piecewise Linear

The link of every face is a sphere of appropriate dimension.

A manifold is described as a triangulation, or a simplicial complex.

PL n-Manifold: A simplicial complex satisfying properties
that ensure it is locally homeomorphic to Rn.

Simplicial complex: A collection of simplices satisfying:
Every face of a simplex from K is also in K
The intersection of any two simplices in K is a face of each.

Note: This is one motivation for the problem of determining 
whether a given simplicial complex (the link) is a sphere.

https://en.wikipedia.org/wiki/Simplex#Elements
https://en.wikipedia.org/wiki/Set_intersection


Can we recognize and classify knots?



Knots can be drawn in different ways.
How can we tell, systematically, if two diagrams give the same knot?

?

?

Can we recognize and classify knots?



?

Are these knots the same?



Even unknots can be drawn in deceiving ways

?
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Hard to Recognize Unknots
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Haken’s Unknot

Hard to Recognize Unknots
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Another Haken Unknot

Hard to Recognize Unknots



Problem: SPLIT LINK  
Instance: A link L in S3 with complement ML.   
Question: Does ML contain a 2-sphere that separates the components of L?

Some basic decision Problems for Knots and Links
Problem: UNKNOTTING  
Instance: A knot K in S3.   
Question: Is K unknotted?

Problem: KNOT RECOGNITION  
Instance: A pair of knots K1 and K2 in S3.   
Question: Are K1 and K2 equivalent knots?

Problem: KNOT GENUS  
Instance: A knot K in S3 and an integer g. 
Question: Does K bound a surface of genus at most g?

Haken’s approach gives algorithms for each of these.



Problem: SPLIT LINK  
Instance: A link L in S3 with complement ML.   
Question: Does ML contain a 2-sphere that separates the components of L?

Some basic decision Problems for Knots and Links
Problem: UNKNOTTING  
Instance: A knot K in S3.   
Question: Is K unknotted?

Problem: KNOT RECOGNITION  
Instance: A pair of knots K1 and K2 in S3.   
Question: Are K1 and K2 equivalent knots?

Problem: KNOT GENUS  
Instance: A knot K in S3 and an integer g. 
Question: Does K bound a surface of genus at most g?

Haken’s approach gives algorithms for each of these.

Problem: UNKNOTTING NUMBER  
Instance: A knot K in S3 and an integer n.  
Question: Does K have unknotting number at most n?

But not for everything.  For example, we don’t have an algorithm for:



UNKNOTTING has historical connections to the 
foundations of theoretical computer science.  
 
Max Dehn (1878 - 1952) 

Wrote one of the first topology books (1907) 

Proposed the search for a procedure to determine 
if a curve is knotted (1910). 

This predated the definition of an algorithm.

Some history
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In 1961 Haken published a proof of the UNKNOTTING problem

Theorem (Haken) There is an algorithmic procedure to 
1. Recognize the Unknot 
2. Classify knots 
3. Compute the genus of a knot 
4. Determine if a link is split

We will look at the ideas he used to prove this theorem. 

We will also look at the running times of such algorithms. 
How practical are they?

It took about 50 years to find.  (Dehn 1910 to Haken 1961)



Turing machines specify algorithms
An algorithm is a procedure to solve a class of problems

This is made precise using the idea of a Turing machine

Formal definition:



 How can we think about an algorithm?
An algorithm is an unambiguous procedure to solve a class of problems.

We focus on algorithms for “decision problems”

A decision problem formulates a yes-no question for an input value

Examples

GRAPH 3-COLOR  
Instance: A graph.  
Question: Can the graph be 3-colored?                        

PRIME 
Instance: An integer.  
Question: Is the integer prime?

SAT 
Instance: A boolean expression.  
Question: Is there a truth assignment to the variables 
which makes the expression true?

https://en.wikipedia.org/wiki/Yes-no_question


 What is an algorithm?
A decision problem gives a yes-no question for an input value.

GRAPH 3-COLOR
Instance: A graph G.  
Question: Can G be 3-colored?

https://en.wikipedia.org/wiki/Yes-no_question


 What is an algorithm?
A decision problem gives a yes-no question for an input value

GRAPH 3-COLOR
Instance: A graph G.  
Question: Can G be 3-colored?

YES

NO

https://en.wikipedia.org/wiki/Yes-no_question


 What is an algorithm?
A decision problem formulates a yes-no question for an input value

PRIME
Instance: An integer K   
Question: Is K prime?

1003047282 0909643626 9999457312 5637852723 4362147276 6640900005 5271790903 5637310037

1003047282 0909643626 9999457312 5637852723 4362147276 6640900005 5271790903 5637310039

https://en.wikipedia.org/wiki/Yes-no_question


 What is an algorithm?
A decision problem formulates a yes-no question for an input value

PRIME
Instance: An integer K   
Question: Is K prime?

1003047282 0909643626 9999457312 5637852723 4362147276 6640900005 5271790903 5637310037

YES

1003047282 0909643626 9999457312 5637852723 4362147276 6640900005 5271790903 5637310039

NO

https://en.wikipedia.org/wiki/Yes-no_question


 What is an algorithm?
A decision problem gives a yes-no question for an input value

SATISFIABILITY  (SAT)
Instance: A Boolean Expression.  
Question: Is there a truth assignment that satisfies the expression?

(¬x1 ∨ x2 ∨ ¬y3) ∧ (¬x1 ∨ ¬x2 ∨ y3) ∧ (x1 ∨ x2 ∨ y3) ∧ (x1 ∨ ¬x2 ∨ ¬y3)

https://en.wikipedia.org/wiki/Yes-no_question


 What is an algorithm?
A decision problem gives a yes-no question for an input value

SATISFIABILITY  (SAT)
Instance: A Boolean Expression.  
Question: Is there a truth assignment that satisfies the expression?

(¬x1 ∨ x2 ∨ ¬y3) ∧ (¬x1 ∨ ¬x2 ∨ y3) ∧ (x1 ∨ x2 ∨ y3) ∧ (x1 ∨ ¬x2 ∨ ¬y3)

Set x1 = False,    x2 = True,    y3 = False.  

Then each clause evaluates to True, as does the whole boolean expression.

For example, the second clause (¬x1 ∨ ¬x2 ∨ y3) is True because ¬x1 is True.

https://en.wikipedia.org/wiki/Yes-no_question


Look at the  knot group - the fundamental group of the 
knot complement. This is easy to describe with generators 
and relations.

Dehn's Lemma (Proved by Papakyriakopoulos 1957).
A knot is trivial if and only if its group is infinite cyclic. 

  

Dehn’s Idea: Transform UNKNOTTING into an algorithmic 
problem in algebra.



Look at the  knot group - the fundamental group of the 
knot complement. This is easy to describe with generators 
and relations.

Dehn's Lemma (Proved by Papakyriakopoulos 1957).
A knot is trivial if and only if its group is infinite cyclic. 

Unknotting reduces to:  
Question: Is the knot group isomorphic to the infinite 
cyclic group?

Dehn’s Idea: Transform UNKNOTTING into an algorithmic 
problem in algebra



Look at the  knot group - the fundamental group of the 
knot complement. This is easy to describe with generators 
and relations.

Dehn's Lemma (Proved by Papakyriakopoulos 1957).
A knot is trivial if and only if its group is infinite cyclic. 

Unknotting reduces to:  
Question: Is the knot group isomorphic to the infinite 
cyclic group?

Dehn’s Idea: Transform UNKNOTTING into an algorithmic 
problem in algebra

Can we determine if a finitely presented group is isomorphic to the 
infinite cyclic group?



Look at the  knot group - the fundamental group of the 
knot complement. This is easy to describe with generators 
and relations.

Dehn's Lemma (Proved by Papakyriakopoulos 1957).
A knot is trivial if and only if its group is infinite cyclic. 

Unknotting reduces to:  
Question: Is the knot group isomorphic to the infinite 
cyclic group?

Dehn’s Idea: Transform UNKNOTTING into an algorithmic 
problem in algebra

No     (Not in general - though yes for certain classes of groups)

Can we determine if a finitely presented group is isomorphic to the 
infinite cyclic group?



The WORD PROBLEM  
The ISOMORPHISM PROBLEM 
The TRIVIALITY PROBLEM
The CONJUGACY PROBLEM
 
Dehn solved some of these for special groups 
(free groups, surface groups).

Such decision problems for finitely presented groups are undecidable.
No algorithm exists!  (1950’s Novikov, Boone)

These were among the first undecidable problems found in mathematics.

Dehn formulated some basic decision problems for groups 



WORD PROBLEM
Instance: A finitely presented group   G = <g1, g2,  …, gm ; r1, r2, … , rn >  
and a word w in G.
Question: Does w represent the trivial word in G?
 
TRIVIALITY PROBLEM
Instance: A finitely presented group  G = <g1, g2,  …, gm ; r1, r2, … , rn >.
Question: Is G isomorphic to the trivial group?

ISOMORPHISM PROBLEM
Instance: Two finitely presented groups G and H.
Question: Is G isomorphic to H?

Basic decision problems for groups 

Each of these problems is undecidable!    
(Cantor, Hilbert, Godel, Turing 1950, Markov 1951, Novikov 1955, 
Adian 1955, Boone 1958, Rabin 1958)

No algorithm exists that will solve them for general groups.



 
TRIVIALITY
Instance: A finitely presented group  G = <g1, g2,  …, gm ; r1, r2, … , rn >.
Question: Is G isomorphic to the trivial group?

Two Consequences of Undecidability of TRIVIALITY

There is no algorithm to decide if two closed 4-dimensional manifolds are 
homeomorphic. 

Theorem (Markov  1958)
n-MANIFOLD RECOGNITION is undecidable for n > 4.

Theorem (Novikov ~1959)
n-SPHERE RECOGNITION is undecidable for n > 5.

There is no algorithm to decide if a closed 5-dimensional manifold is S5.



4-Manifold Recognition is Undecidable

Proof:  We show that an algorithm to recognize 4-manifolds implies an 
algorithm to solve the problem of whether a given group presentation 
represents the trivial group, TRIVIALITY. The latter problem is among 
those known to be undecidable. 


We reduce 

TRIVIALITY

to 

4-MANIFOLD RECOGNITION.

1. Start with a presentation G = <g1, g2,  …, gm ; r1, r2, … , rn > 

2. Construct a 4-dimensional manifold M with the property that  
M is diffeomorphic to #n S2 x S2     ⇔   G is isomorphic to the trivial group.

Theorem (Markov  1958) 
n-MANIFOLD RECOGNITION is undecidable for n > 4.



Handles (5-dimensional Morse Theory)

1-handle:     D1 x D4,  attached along ∂D1 x D4, or S0 x D4 

2-handle:      D2 x D3,  attached along ∂D2 x D3,  or S1 x D3 

Morse Theory shows us how to build manifolds using 1-handles and 
2-handles whose fundamental group is isomorphic to a given group 
presentation.



Handles (5-dimensional Morse Theory)

1-handle:     D1 x D4,  attached along ∂D1 x D4, or S0 x D4 

2-handle:      D2 x D3,  attached along ∂D2 x D3,  or S1 x D3 

For 5D handles, take these 3D 
pictures and take a product of the 
second factor with D2

Morse Theory shows us how to build manifolds using 1-handles and 
2-handles whose fundamental group is isomorphic to a given group 
presentation.



Smooth manifolds are built with handles

Morse Theory shows us how to build manifolds using 1-handles and 
2-handles whose fundamental group is isomorphic to a given group 
with a finite presentation.



Smooth manifolds are built from handles
Morse Theory shows us how to build manifolds using 1-handles and 
2-handles whose fundamental group is isomorphic to a given group 
presentation.

Start with a 0-handle (B5) and add one 1-handle for each generator 
and one 2-handle for each relation.



Smooth manifolds are built from handles
Morse Theory shows us how to build manifolds using 1-handles and 
2-handles whose fundamental group is isomorphic to a given group 
presentation.

Start with a 0-handle (B5) and add one 1-handle for each generator 
and one 2-handle for each relation.

G = <g1, g2,  …, gm ; r1, r2, … , rn >



Canceling Handles

A 1-handle and a 2-handle cancel each other if the attaching curve of the 

2-handle runs once over the 1-handle.



Canceling Handles

A 1-handle and a 2-handle cancel each other if the attaching curve of the 

2-handle runs once over the 1-handle.

In dimensions 4 and above, homotopy and isotopy of curves are the same.

A 1-handle and a 2-handle cancel each other if the attaching curve of the 

2-handle can be isotoped (deformed through embedding) to run once over the 1-handle.



Important Example - S2xS2

Start with a 5-dimensional ball B5. Its boundary is a 4-sphere S4.

Attaching n 2-handles to B5 gives a manifold W diffeomorphic to #n S2xB3.

Attaching n trivial 2-handles to B5 gives a manifold whose boundary is 
diffeomorphic to #n S2xS2.

one 2-handle Four 2-handles

There is only one way to attach a 2-handle to B5, since all curves in S4 
are isotopic.  

B5

S2xB3
#4 S2xB3

W
S4



4-Manifold Recognition is Undecidable
Proof:  We show that an algorithm to recognize 4-manifolds implies 
that there is an algorithm to solve the problem of whether a given 
presentation represents the trivial group, TRIVIALITY. But the latter 
is known to be undecidable.


We reduce TRIVIALITY to 4-MANIFOLD RECOGNITION.

1. Start with a presentation G = <g1, g2,  …, gm ; r1, r2, … , rn >

2. Construct a 5-dimensional manifold W5 with π1(W) ≈ G as follows:



1. Start with a presentation G = <g1, g2,  …, gm ; r1, r2, … , rn >

2. Construct a 5-dimensional manifold W5 as follows:

a. Take the 5 ball B5. Its boundary is S4.

Proof: Reduce TRIVIALITY to 4-MANIFOLD RECOGNITION.

B5

S4

4-Manifold Recognition is Undecidable



1. Start with a presentation G = <g1, g2,  …, gm ; r1, r2, … , rn >

2. Construct a 5-dimensional manifold W5 as follows:

a. Take the 5 ball B5. Its boundary is S4.

b. Add m 1-handles. 
Boundary is now #m S2xS2

Proof: Reduce TRIVIALITY to 4-MANIFOLD RECOGNITION.

4-Manifold Recognition is Undecidable



1. Start with a presentation G = <g1, g2,  …, gm ; r1, r2, … , rn >

2. Construct a 5-dimensional manifold W5 as follows:

a. Take the 5 ball B5. Its boundary is S4.

b. Add m 1-handles. 
Boundary is now #m S2xS2

c. Add n 2-handles. Attach them so they follow the presentation given for G. 
Now have a 5-manifold W with fundamental group G. Its boundary is some 
complicated 4-manifold.

Proof: Reduce TRIVIALITY to 4-MANIFOLD RECOGNITION.

W

4-Manifold Recognition is Undecidable



Claim. The boundary of W, ∂W, is a 4-manifold with 
the same fundamental group as W.

Proof. There is enough room in 
five dimensions to push curves 
and curve homotopies to ∂W.   A 
homotopy of a curve is 2-
dimensional.  In 5 dimensions the 
homotopy can be made to miss 
the 1-dimensional core of a 1-
handle and the 2-dimensional 
core of a 2-handle.  Thus curves 
and curve homotopies can be 
pushed out to ∂W.

In codimension 3, curves and surfaces can be pushed to ∂W 

B5 - pt

∂W
W



4-Manifold Recognition is Undecidable

1. Start with a presentation G = <g1, g2,  …, gm ; r1, r2, … , rn >

2. Construct a 5-dimensional manifold W5 as follows:

a. Start with the 5 ball B5. Its boundary is S4.

b. Add m 1-handles. 

c. Add n 2-handles. Now have a 5-manifold W with fundamental group G. 

d. The boundary of W is a 4-manifold with the same fundamental group as W.

Proof: Reduce TRIVIALITY to 4-MANIFOLD RECOGNITION.

W

∂W



e. Add an additional m trivial 2-handles to get W’ 


W’ is the connect sum of W with S2xB3’s.


 π1(W) ≈ π1(W’) ≈ G, does not change.

Theorem (Markov, 1958) 
M is diffeomorphic to #n S2xS2  ⇔  G is the trivial group

Let M be the boundary of this 5-manifold.

π1(M) ≈ π1(W’) ≈ G.

M= ∂Wπ1(W’) ≈ G

W’

m 2-handles



e. Add an additional m trivial 2-handles.


W is the connect sum of W with S2xB3’s.


 π1(W) ≈ π1(W’) ≈ G, does not change.

Theorem (Markov, 1958) 
M is diffeomorphic to #n S2xS2  ⇔  G is the trivial group

Let M be the boundary of this 5-manifold.

π1(M) ≈ π1(W’) ≈ G.

M= ∂Wπ1(W’) ≈ G

W’

Proof:     ⇒  Immediate, since  π1(#n S2xS2) ≈ 1. 

m 2-handles



Theorem

M is diffeomorphic to #n S2xS2   

⇔ G is the trivial group

Proof:  

⇐ 


We know from the construction that π1(M) ≈ π1(W’) ≈ G. 

So π1(M) ≈ 1, and so all curves are homotopic and isotopic in M.  
So all 2-handle attaching curves are isotopic in M.  
So the m (green) 2-handles can be isotoped to run exactly once over, and so 
cancel, the m (blue) 1-handles. 

Then the n (red) 2-handles are being attached to an S4 and are isotopic to n trivial 

2-handles. 

Attaching n trivial 2-handles (red) to S4 gives a manifold M that is diffeomorphic to 
#n S2xS2.


Corollary (Markov) 4-Manifold Recognition is Undecidable 


Proof. Since we can’t algorithmically decide if G is the trivial 
group, no algorithm will tell us if M is diffeomorphic to #nS2xS2.


W’
M= ∂W’

m 2-handles

m 1-handles



Corollary (Markov) 4-Manifold Recognition is Undecidable

What Other Problems are Undecidable?


Perhaps most topology problems? Your thesis problem?



Corollary (Markov) 4-Manifold Recognition is Undecidable

What Other Problems are Undecidable?


Perhaps most topology problems? Your thesis problem?

Haken’s results come right on the tail of these undecidability results 
and indicate that three manifold questions seem to have algorithmic 
solutions.  This leads to a general idea that algorithm obstacles are 
closely related to dimension.


Dimension 1 and 2:  Fast algorithms generally exist.

Dimension 3:  Algorithms generally exist, but could be exponential.

Dimension 4 and above:  Many problems are undecidable.



Now to Dimension Three

So far, Haken’s approach seems to have the most widespread 

applicability to 3-manifolds problems.


But there are many appealing approaches that seem to be 
plausible for UNKNOTTING.



Thurston (1978):  Knot complements have geometric 
structures.

Perelman (2003) 3-manifolds have geometric structures.

Sela (1995): There is an algorithm to determine if two 
geometric 3-manifolds are homeomorphic.

Sela’s approach reduces to determining if two hyperbolic 
groups are isomorphic.  (More general than determining if 
two 3-manifold groups are isomorphic.)

The running time of such algorithms seems to involve towers
of exponentials.

1. Geometric structures

Other Approaches to Unknotting



Alexander Polynomial (1920) 
There are non-trivial knots with trivial Alexander Polynomial. 
Jones Polynomial (1984)   
It is not known if V(K) = 1 only when K is unknotted. 
There are distinct knots with the same Jones polynomial.

Approach to Unknotting 2: Knot invariants



Alexander Polynomial (1920) 
There are non-trivial knots with trivial Alexander Polynomial. 
Jones Polynomial (1984)   
It is not known if V(K) = 1 only when K is unknotted. 
There are distinct knots with the same Jones polynomial.

Other knot invariants can distinguish the unknot: 
1. Knot Floer Homology (2004, Ozsváth and Szabó) 
2. A-polynomial (2004, Boyer and Zhang, Dunfield and Garoufalidis) 
3. Khovanov Homology (2011, Kronheimer and Mrowka) 

But -  
1. Can be hard to compute 
2. Relation to 3-manifold theory is unclear. 

The Normal Surface approach we will look at to detect unknots appears to be 
a. Easier to compute. 
b. Can recognize all knots - gives a classification of knots. 
c. Widely applicable for many 3-manifold problems.

Approach to Unknotting 2: Knot invariants



(I. Dynnikov)  Knots are represented as curves on 
a book with three pages.

Some Moves:

Replace the red pair of 
arcs with the blue pair.

Simplify:
Contract the arc connecting the 
rightmost pair of points.
Two less points on central line.

Approach 3: 3-page books



Knots are represented as curves on a book with 
three pages.

Theorem (Dynnikov 1999) 
This gives an unknotting algorithm.   

This is one of several approaches implemented in software. 

Book Knot Simplifier  
Andreeva, Dynnikov, Koval, Polthier, Taimanov 

Knot Simplifier web service 
http://www.javaview.de/services/knots 

Approach 3: 3-page books



Approach  4: Diagrams

The study of knot diagrams - planar curves with choices of over and 
under-crossings, is an interesting subject of its own. Can we work 
directly with diagrams, manipulating them to simplify unnecessary 
crossings?



Knot and Link Diagrams

The study of knot diagrams - planar curves with choices of over 
and under-crossings, is an interesting subject of its own. 



Direct approach to Unknotting:  Simplify Knot Diagrams

Question:   

Can we find a way to change an n-crossing unknot diagram to a 
trivial diagram? 



Diagrams can be changed using 
Reidemeister moves, without changing 
the knot they represent.



Reidemeister moves

R1



Reidemeister moves

R1



Reidemeister moves



Reidemeister moves

R2



Reidemeister moves

R2



Reidemeister moves



Reidemeister moves

R3



Reidemeister moves

R3



Reidemeister moves



Reidemeister Moves

Theorem (Reidemeister, Alexander-Briggs, 1926)
Two diagrams representing the same knot are connected 
by a sequence of these three moves.



Reidemeister Moves
Theorem (Reidemeister, Alexander-Briggs, 1926)
Two diagrams representing the same knot are connected by a sequence of these three 
moves.

Proof: PL Knot equivalence consists of a sequence of elementary moves.

Reidemeister Moves
Theorem (Reidemeister, Alexander-Briggs, 1926)
Two diagrams representing the same knot are connected by a sequence of
these three Reidemeister moves.

Key Question: How many?
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Proof: Each elementary move gives finitely many Reidemeister moves.
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Reidemeister Moves
Theorem (Reidemeister, Alexander-Briggs, 1926)
Two diagrams representing the same knot are connected by a sequence of these three 
moves.

Proof: PL Knot equivalence consists of a sequence of elementary moves.

Each elementary move gives rise to finitely many Reidemeister moves.

Reidemeister Moves
Theorem (Reidemeister, Alexander-Briggs, 1926)
Two diagrams representing the same knot are connected by a sequence of
these three Reidemeister moves.

Key Question: How many?

Joel Hass Knots and Knot Diagrams Nov. 24, 2014 5 / 1

Proof: Each elementary move gives finitely many Reidemeister moves.

Reidemeister Moves
Theorem (Reidemeister, Alexander-Briggs, 1926)
Two diagrams representing the same knot are connected by a sequence of
these three Reidemeister moves.

Key Question: How many?

Joel Hass Knots and Knot Diagrams Nov. 24, 2014 5 / 1

Proof: Each elementary move gives finitely many Reidemeister moves.

Reidemeister Moves
Theorem (Reidemeister, Alexander-Briggs, 1926)
Two diagrams representing the same knot are connected by a sequence of
these three Reidemeister moves.

Key Question: How many?

Joel Hass Knots and Knot Diagrams Nov. 24, 2014 5 / 1

Proof: Each elementary move gives finitely many Reidemeister moves.

Reidemeister Moves
Theorem (Reidemeister, Alexander-Briggs, 1926)
Two diagrams representing the same knot are connected by a sequence of
these three Reidemeister moves.

Key Question: How many?

Joel Hass Knots and Knot Diagrams Nov. 24, 2014 5 / 1

Proof: Each elementary move gives finitely many Reidemeister moves.

Type II and III Type I



Using Reidemeister moves for UNKNOTTING

Given an unknot diagram with n crossings, can we get an upper 
bound on how many Reidemeister moves are needed to trivialize it?



Using Reidemeister moves for UNKNOTTING
Given an unknot diagram with n crossings, how many Reidemeister 
moves are needed to trivialize it?
Can we find a function U(n) such that any unknot diagram with n 
crossings can be transformed to the trivial diagram by at most U(n) 
Reidemeister moves?
If yes, we have an algorithm.  Just try all possible sequences of up 
to U(n) Reidemeister moves and see if any give a trivial diagram.



Upper	Bounds
What can we find on the internet?

From jewelerysecrets.com:

“It’s Not Difficult to get Rid of a Knot! 
It’s just time consuming …”

http://jewelerysecrets.com


Upper	Bounds
To get an upper bound, unknot with Reidemester moves and count.

From jewelerysecrets.com:

“It’s Not Difficult to get Rid of a Knot! 
It’s just time consuming …”
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Upper	Bounds
To get an upper bound, unknot with Reidemester moves and count.

1) Lay the Chain Flat                      (project the knot to the plane)
2)  Use Two Sewing Pins                 (make the projection regular)
3)  Wiggle the Knot out                    (use Reidemeister moves to unknot)

From jewelerysecrets.com:

“It’s Not Difficult to get Rid of a Knot! 
It’s just time consuming …”

http://jewelerysecrets.com


Upper	Bounds
To get an upper bound, unknot with Reidemester moves and count.

We will follow this advice.

1) Lay the Chain Flat                      (project the knot to the plane)
2)  Use Two Sewing Pins                 (make the projection regular)
3)  Wiggle the Knot out                    (use Reidemeister moves to unknot)

From jewelerysecrets.com:

“It’s Not Difficult to get Rid of a Knot! 
It’s just time consuming …”

http://jewelerysecrets.com


Using Reidemeister moves for UNKNOTTING
Given an unknot diagram with n crossings, how many Reidemeister 
moves are needed to trivialize it?
Can we find a function U(n) such that any unknot diagram with n 
crossings can be transformed to the trivial diagram by at most U(n) 
Reidemeister moves?
If yes, we have an algorithm.  Just try all possible sequences of up 
to U(n) Reidemeister moves and see if any give a trivial diagram.

How many do we need? 
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Using Reidemeister moves for UNKNOTTING
Given an unknot diagram with n crossings, how many Reidemeister 
moves are needed to trivialize it?
Can we find a function U(n) such that any unknot diagram with n 
crossings can be transformed to the trivial diagram by at most U(n) 
Reidemeister moves?
If yes, we have an algorithm.  Just try all possible sequences of up 
to U(n) Reidemeister moves and see if any give a trivial diagram.

First bound: Need at least n/2 since each move reduces crossings by 
at most 2.
Some unknots with n crossings require n Reidemeister moves
to trivialize:

This unknotting sequence monotonically reduces crossing number.



Some  unknot diagrams require that the crossing number 
increase as they are transformed to the trivial diagram by 
Reidemeister moves.

Using Reidemeister moves for UNKNOTTING



Some  unknot diagrams require that the crossing number 
increase as they are transformed to the trivial diagram by 
Reidemeister moves.

Using Reidemeister moves for UNKNOTTING

Question Can we enlarge the set of moves to 
allow for monotone descent in crossing number?



Can we extend Reidemeister moves of types 1, 2 and 3, adding moves 
of type  4, 5, … N so that together with Reidemeister moves we get 
monotone descent for the number of crossings?    

Not known if we can do this. If yes, we would have a fast algorithm.

A possible extra move: Flype

A flype



Possible new moves: Flype Moves

Flypes are good at messing up puppets.



Possible new moves

O

U

Figure 1: The move Z1. The thick arc on D is p(α), and the gray region is Ω.

O

U

O

U
U

U

U
U

O
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O

Figure 2: Left: the wrong choice of Ω for Z1. Right: an instance of Z1.

• If βj is an arc then p(βj) is over p(α) at both ends if λj = O, and
under p(α) if λj = U ;

• If λj = U and λk = O then p(βj) is under p(βk) where they cross.

We then call Z1 the move that consists of collapsing α to a point (see Fig. 1).
Of course Z1 preserves the link type, and the Reidemeister move R1 is a
special case of Z1.

Figure 2-left illustrates the wrong choice of Ω as a component of S2\p(α).
An application of Z1 is given in Fig. 2-right.

The move Z2 For λ = U,O let αλ ⊂ S1
iλ

be a closed arc such that p|αλ
is

a simple curve. Suppose that p(αU ) and p(αO) have the same ends at two
crossings of D, and that p(αU ) is under p(αO) at both. Set α = αU ∪ αO,
let Ω be one of the components of S2 \ p(α), and assume that Ω does not
contain any of the four germs of extensions of p(α). Let β1, . . . ,βN be the
components (each a arc or a circle) of p−1(Ω), and suppose it is possible to
assign them labels λ1, . . . ,λN in {U,O} so that precisely the same conditions
as in the definition of the move Z1 are met. Under these assumptions we
call Z2 the move that consists of interchanging p|αU

and p|αO
and pulling

5

Petronio-Zanellati 2016:  Suggested 4 new moves.  

Windows software at http://www.zanellati.it/knot/index.htm

There is no proof that this method always works.

In practice, this and other methods (Regina (Burton), Snappea (Weeks, Culler, 
Dunfield), …) work surprisingly well. They can handle many diagrams with several 
hundred crossings.  

Move Z1

Question. Is there a simple method for unknotting that we have missed?



Bounding the number of required Reidemeister moves

Question:   

How many Reidemeister moves are needed to change an n-
crossing unknot diagram to a trivial diagram? 



Theorem  H-Lagarias, 2001
U(n) <  cn 21011 c =

Theorem Lackenby 2012   
U(n) <  (231n)11

Haken’s method implies bounds

Recently there was a major improvement.  The bound was improved 
from exponential to polynomial.

A bound on U(n) implies an unknotting algorithm. 
Namely try all sequences of up to U(n) Reidemeister moves.

Find U(n) so that: The number of Reidemeister moves needed to 
change an n-crossing unknot diagram to a trivial diagram is at most 
U(n).

Upper Bounds



Upper Bounds


