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The first successful algorithm. Took about 50 years to find. 
(Dehn 1910 to Haken 1961)

Haken’s algorithm for unknotting searches for a disk in 3-space 
whose boundary is the knot. It is based on 3-manifold theory.

Haken’s Algorithm

Theorem (Haken) There is an algorithmic procedure to
1. Recognize the Unknot
2. Classify knots
3. Compute the genus of a knot
4. Determine if a link is split
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Is this the unknot?

Idea behind Haken’s Algorithm
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Is this the unknot?

Idea behind Haken’s Algorithm

Haken’s algorithm is based on the following fact:
A knot is trivial if and only if it is the boundary of a disk in R3.

The algorithm is inherently based on 3-manifold topology (as 
opposed to diagrams or combinatorics).
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Idea behind Haken’s Algorithm

A knot is trivial if and only if it is the 
boundary of a disk in R3.
So look for a disk spanning the knot.
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Idea behind Haken’s Algorithm

Question: Is there always a “simple” disk spanning an unknot K?

But some disks in R3 are very 
complicated and hard to describe.

A knot is trivial if and only if it is the 
boundary of a disk in R3.
So look for a disk spanning the knot.
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K1 K3

Theorem (H-Snoeyink-Thurston 2002) 
There is a sequence of unknotted polygonal curves  Kn such that Kn 
has less than 11n edges and any triangulation of a disk with boundary 
Kn contains at least 2n triangular faces. 

Complicated disks cannot be avoided

The number of triangles in any spanning disk for these unknots grows 
exponentially with the number of edges.



Surfaces in Topology

Examples 

A curve in a manifold is unknotted if it is the boundary of an embedded disk. 

A 3-manifold with infinite fundamental group admits a hyperbolic structure  
if and only if it contains no essential spheres or tori.

Question  
Can we systematically search for surfaces such as essential disks, spheres or 
tori?  

Can we determine whether such surfaces exist?

Many problems in 3-dimensional topology reduce to understanding surfaces 
in a 3-manifold. 



Surfaces in Topology

Examples 
• A curve in a manifold is unknotted if it is the boundary of an 

embedded disk. 
• A 3-manifold with infinite fundamental group admits a hyperbolic 

structure if and only if it contains no essential spheres or tori.

Question  
Can we systematically search for surfaces such as essential disks, spheres or 
tori?  Can we determine whether such surfaces exist?

Answer  
Generally yes, by using the theory of Normal Surfaces. 

The algorithma to solve our problem have two basic steps: 
• Normalization 
• Fundamentalization 
 

Many problems in 3-dimensional topology reduce to understanding surfaces 
in a 3-manifold. 



Warmup - Curves in surfaces

Curves on a surface can be complicated and hard to describe.

D. Calegari

Normal curves give efficient descriptions of curves on a surface. 
Exponentially more compact than listing the successive vertices of 
a polygon or a triangulation.



Definition:  An arc in a triangle is elementary or normal if it is 
embedded and its two endpoints lie on distinct edges of the triangle. 

Elementary arcs Non-elementary arcs

There are three types of elementary arcs in a triangle 
(up to an isotopy preserving the edges of the triangle.)

Normal curves in surfaces

1 2

3

Definition:  A curve on a triangulated surface is normal if it intersects
each triangle in a disjoint union of elementary arcs. 

The idea of normal curves and surfaces originated with Kneser (1930). 



Normal curves in surfaces

Theorem  An embedded curve on a triangulated surface can be isotoped 
so that each component is either
1. normal 

or 
2. contained in the interior of a triangle.

Fix a triangulation on a surface.
Then take any curve.
The curve can be made normal. We call this normalization.



Normalizing a curve on a surface

Normalizing decreases the weight of a curve.
The weight of a curve is the number of times the curve meets an edge.



Normalizing a curve on a surface
The weight of a curve is the number of times the curve meets an edge.  
We can think of weight as giving a crude measure of length, with a 
surface metric that is concentrated along the edges of a triangulation. As 
we traverse a curve on the surface, weight counts how many times we 
climb over walls.  Normal curves climb over walls a minimal number of 
times. There are even higher towers at the vertices, which are avoided.



Normalizing a curve on a surface

Find a triangle where the curve is not normal.



Normalizing a curve on a surface

Find a triangle where the curve is not normal.
Find an outermost disk and isotop the curve across it.
This move keeps the curve embedded.



Normalizing a curve on a surface

Find a triangle where the curve is not normal.
Find an outermost disk and isotop the curve across it.

This move reduces the weight of the curve by two.
Induction completes the proof, giving an isotopic normal curve.
The argument also works for disconnected curves, keeping them disjoint as they normalize.

This move keeps the curve embedded.



Normalizing a curve on a surface

Find a triangle where the curve is not normal.
Find an outermost disk and isotop the curve across it.

This move reduces the weight of the curve by two.
Induction completes the proof, giving an isotopic normal curve.
The argument also works for disconnected curves, keeping them disjoint as they normalize.

This move keeps the curve embedded.

Lemma A curve of least weight in its isotopy class either lies inside a triangle or is 
normal.
Theorem  An embedded curve on a triangulated surface can be isotoped so that 
each component is normal or contained in the interior of a triangle.



Normalization of curves on a surface
Fix a triangulation on a surface.
Then take any curve on the surface, connected or not.
The curve can be made normal.
Theorem  An embedded curve on a triangulated surface can be isotoped so that 
each component is normal or contained in the interior of a triangle.



Haken’s contribution: From Topology to Algebra

In the mid 1950’s, Haken contributed a breakthrough idea.  

The normal surfaces of topology and geometry are in one-
to-one correspondence with certain algebraic objects.

This correspondence opens topological problems to 
extremely efficient algorithmic analysis.



Normal curves and integer vectors

Normal curves are in one-to-one correspondence with certain integer vectors.
Normal curves connect topology and algebra.

V = < …., 2, 7, 4, …   > 

A normal curve determines a vector with integer 
entries, three for each 2-simplex.

V = <v1,  v2,  v3,  v4,  v5, … v22,  v23,  v24, …  v3t > 

Haken’s Idea:

2

4
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v22 v23

v24



Normal curves and integer vectors

Normal curves are in one-to-one correspondence with certain integer vectors.
Normal curves connect topology and algebra.

V = < …., 2, 7, 4, …   > 

A normal curve determines a vector with integer 
entries, three for each 2-simplex.

V = <v1,  v2,  v3,  v4,  v5, … v22,  v23,  v24, …  v3t > 

Haken’s Idea:

2

4

7
v22 v23

v24

But - not all integer vectors give normal curves.  

Which ones do?



Normal curves and integer vectors
Not all integer vectors give normal curves.  Which ones do?
The curves need to match up along adjacent triangles.



Normal curves and integer vectors
Not all integer vectors give normal curves.  Which ones do?
The curves need to match up along adjacent triangles.

2 + 3 = 1 + 4



Normal curves and integer vectors
Not all integer vectors give normal curves.  Which ones do?
The curves need to match up along adjacent triangles.

2 + 3 = 1 + 4

The curves match up along adjacent triangles if the vector coordinates vi satisfy
equations of the form

vi + vj = vk + vl

vi > 0

These are called the Matching Equations. 
Their integer solutions determine a curve.

3t/2 equations

3t variables in  Z+

3t inequalities

vi



Adding Curves and Adding Vectors
Adding Curves: We can add normal vectors using vector addition. An 
amazing fact is that there is a natural corresponding “addition” of curves



Adding Curves and Adding Vectors
Adding Curves: We can add normal vectors using vector addition. An 
amazing fact is that there is a natural corresponding “addition” of curves

1. If two normal curves are disjoint, take their geometric sum to be 
their disjoint union. This curve addition agrees with vector addition.

Haken sum for disjoint curves

+ =

4
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2
  < …., 0, 4, 0, …   > +   < …., 0, 0, 2, …   > =   < …., 0, 4, 2, …   > 



Adding Curves and Adding Vectors
Adding Curves: We can add normal vectors using vector addition. An 
amazing fact is that there is a natural corresponding “addition” of curves

1. If two normal curves are disjoint, take their geometric sum to be 
their disjoint union. This curve addition agrees with vector addition.

+ =

Haken sum for disjoint curves
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+ =
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2
  < …., 0, 4, 0, …   > +   < …., 0, 0, 2, …   > =   < …., 0, 4, 2, …   > 

  < …., 2, 4, 1, …   > +   < …., 2, 1, 2, …   > =   < …., 4, 5, 3, …   > 

1



Adding Curves and Adding Vectors
Adding Curves: We can add normal vectors using vector addition. An 
amazing fact is that there is a natural corresponding “addition” of curves

2.  If two normal curves intersect, form their “normal sum” or 
“Haken sum”. This curve addition agrees with vector addition.

Curve addition for intersecting curves is done using “cut and paste.”

There are two choices for resolving a crossing.  But only one results
in normal curves. That is the regular sum that we will use.
Note:  The orientation of the curve plays no role.



Adding Curves and Adding Vectors
Adding Curves: We can add normal vectors using vector addition. An 
amazing fact is that there is a natural corresponding “addition” of curves

2.  If two normal curves intersect, form their “normal sum” or 
“Haken sum”. This curve addition agrees with vector addition.

A
B

A+B

normal sum

This is also called “regular” sum 
When we cut and paste curves in this way, normal curves A and B
give rise to a new normal curve A+B.



Adding Curves and Adding Vectors
Adding Curves: We can add normal vectors using vector addition. An 
amazing fact is that there is a natural corresponding “addition” of curves

2.  If two normal curves intersect, form their “normal sum” or 
“Haken sum”. This curve addition agrees with vector addition.

A

B

A+B
normal sum

This irregular sum does not give a normal 
curve. This cut and paste choice leads to a 
curve that hits an edge twice.

When adding curves algebraically, 
we don’t cut and paste this way. But 
if we do, we can reduce weight!



Adding Curves and Adding Vectors
Adding Curves: We can add normal vectors using vector addition. An 
amazing fact is that there is a natural corresponding “addition” of curves

2.  If two normal curves intersect, form their “normal sum” or 
“Haken sum”. This curve addition agrees with vector addition.

A

B

A+B
normal sum

irregular sum - does not give a normal curve,
                         does not correspond to algebra.

When adding curves algebraically, 
we don’t cut and paste this way. But 
if we do, we can reduce weight!



Adding Curves and Adding Vectors
Adding Curves: We can add normal vectors using vector addition. An 
amazing fact is that there is a natural corresponding “addition” of curves

2.  If two normal curves intersect, form their “normal sum” or 
“Haken sum”. This curve addition agrees with vector addition.

Haken sum for intersecting curves

+
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Adding Curves and Adding Vectors
Adding Curves: We can add normal vectors using vector addition. An 
amazing fact is that there is a natural corresponding “addition” of curves
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  < …., 0, 1, 0, …   > +   < …., 0, 0, 2, …   > =   < …., 0, 1, 2, …   > 

  < …., 3, 4, 1, …   > +   < …., 0, 1, 0, …   > =   < …., 3, 5, 1, …   > 

2.  If two normal curves intersect, form their “normal sum” or 
“Haken sum”. This curve addition agrees with vector addition.

Haken sum for intersecting curves
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Matching Equations
We have reduced the problem of finding normal curves to the problem
of finding solutions to the matching equations. 
A topological problem can be translated into an algebraic problem.

Sample Topology Problem:  

UNKNOTTING in Dimension 2. 
Instance: A pair of points P ∪ Q in a surface F. 
Question: Is the 1-sphere P ∪ Q unknotted?   
(i.e. is P ∪ Q the boundary of a 1-disk) 

This is equivalent to asking if P and Q lie in the same component of F.



Matching Equations
We have reduced the problem of finding normal curves to the problem
of finding solutions to the matching equations. 
A topological problem has been translated into an algebraic problem.
Sample Problem: Is the 1-sphere P ∪ Q unknotted?  (i.e the boundary of 
a 1-disk)

P P

QQ

Yes
No

or: Is there a curve in F connecting boundary points P and Q?



Matching Equations

vi 
vi + vj = vk + vl 

vi > 0

3t variables in  Z+

3t/2 equations
3t inequalities

We have reduced the problem of finding normal curves to the problem
of finding solutions to the matching equations. 
A topological problem has been translated into an algebraic problem.
Sample Problem: Is the 1-sphere P ∪ Q unknotted?  (i.e the boundary of 
a 1-disk)

Equivalent Question: Is there an integer vector in Z+3t satisfying the 
matching equations and with  v3 = 1 and v15  = 1, and all other variables 
meeting the boundary equal to zero?

P P

QQ

Yes
No

or: Is there a curve in F connecting boundary points P and Q?



Normal Curves
Equivalent Algebraic Question:  Is there an integer vector in Z+3t 
satisfying  the matching equations, with  v3 = 1 and v15  = 1, and with vk = 0 
for all other arcs meeting the boundary?

v15

We are not allowed to use any of the dashed 
red arc types in  constructing a normal curve. 
from P to Q. Set them equal to 0.

We do use the red arc types near P and near Q. 
Set them equal to 1.

P

Q



Normal Curves
Equivalent Algebraic Question:  Is there an integer vector in Z+3t 
satisfying  the matching equations, with  v3 = 1 and v15  = 1, and with vk = 0 
for all other arcs meeting the boundary?

v15

v15

P

Q

We are not allowed to use any of the dashed 
red arc types in  constructing a normal curve. 
from P to Q. Set them equal to 0.

We do use the red arc types near P and near Q. 
Set them equal to 1.

P

Q

The dashed blue arc types can be used.



Normal Curves
Equivalent Algebraic Question:  Is there an integer vector in Z+3t 
satisfying the matching equations, with  v3 = 1 and v15  = 1, and with vk = 
0 for all other arcs meeting the boundary?

Yes, there is a solution.

P
P

Q



Normal Curves
Equivalent Algebraic Question:  Is there an integer vector in Z+3t 
satisfying the matching equations, with  v3 = 1 and v15  = 1, and with vk = 
0 for all other arcs meeting the boundary?

Yes

No

P

P

Q

P

Q



Normal Curves
Equivalent Algebraic Question:  Is there an integer vector in Z+3t 
satisfying the matching equations, with  v3 = 1 and v15  = 1, and with vk = 
0 for all other arcs meeting the boundary?

Yes

No

We can answer such questions by an algorithmic procedure, using 
Integer Linear Programming

P

P
P

Q

Q



Integer Linear Programming
A procedure going back to Hilbert constructs a finite set of solutions, called Fundamental 
solutions, to problems of integer linear programming.
All solutions are sums of a finite number of these “Hilbert basis” solutions.

Consider a collection of linear equations and inequalities in Rd.  
For normal curves on a surface with t triangles, d=3t, and these equations are

vi + vj - vk - vl  =  0 

for all vi, vj, vk, vl, sharing a common edge.  
Also require that each  vi  is an integer and  vi  >  0.

These equations define a linear subspace of Rd.

What can we say about the solutions?



Integer Linear Programming - A Quick Introduction
A procedure going back to Hilbert constructs a finite set of solutions, called Fundamental 
solutions, to problems of integer linear programming.
All solutions are sums of a finite number of these “Hilbert basis” solutions.

Consider a collection of linear equations and inequalities in Rd.  
For normal curves on a surface with t triangles, d=3t, and these equations are

vi + vj - vk - vl  =  0 

for all vi, vj, vk, vl, sharing a common edge.  
Also require that each  vi  is an integer and  vi  >  0.

These equations define a linear subspace of Rd.

What can we say about the solutions?

Theorem.  
There are finitely many “fundamental” solutions F1, … , Fk  such that any 
integer solution w is an integer linear combination 

w = n1F1 + n2F2 + …  + nkFk  

for some integers  n1, n2,…  ,  nk  > 0.  These fundamental solutions can be constructed explicitly.



Integer Linear Programming

Example: Take d=3, so looking at vectors in  R3, satisfying
Linear equations:                                v3  = 0
Inequalities                                         v1  ≥  0,    2v1 - v2  ≥  0,   3v2  ≥   v1  

Find all integer vectors (v1, v2, v3) satisfying these equations.  

Cone of Solutions

3v2  =   v1,

v2  =  2v1

Solution:  Take any integer vector 
(v1, v2, v3) with v3  = 0, v2  ≤  2v1,  3v2  ≥   v1.

How can we construct all the lattice 
points inside this cone?



Integer Linear Programming

Example: Take d=3, so looking in  R3.
Linear equations:                                v3  = 0
Inequalities                                         v1  ≥  0,  2v1 - v2  ≥  0, 3v2  ≥   v1  

Find all integer vectors (v1, v2, v3) satisfying these equations.  

Cone of Solutions

Solution:  Take any integer vector 
(v1, v2, v3) with v3  = 0, v2  ≤  2v1,  3v2  ≥   v1.

How can we construct all the lattice 
points inside this cone?
1.  Projectivize:  Add equation
v1 + v2  + v3 = 1



u1 = < 3/4, 1/4, 0 >, u2 = < 1/3, 2/3, 0 >

Integer Linear Programming

Solution:  Take any integer vector 
(v1, v2, v3) with v3  = 0, v2  ≤  2v1,  3v2  ≥   v1.

Example: Take d=3, so looking in  R3.
Linear equations:                                v3  = 0
Inequalities                                         v1  ≥  0,  2v1 - v2  ≥  0, 3v2  ≥   v1  

Find all integer vectors (v1, v2, v3) satisfying these equations.  

How can we construct all the lattice 
points inside this cone?

2. Replace inequality 3v2   ≥   v1  with
equality 3v2  =   v1    to find 
rational vertex solution u2  (and u1).

u1

Cone of Solutions

u2

3v2  =   v1

3v2  =   v1,

1.  Projectivize:  Add equation
v1 + v2  + v3 = 1



How can we construct all the lattice 
points inside this cone?
1.  Projectivize:  Add equation
v1 + v2  + v3 = 1

Integer Linear Programming

Solution:  Take any integer vector 
(v1, v2, v3) with v3  = 0, v2  ≤  2v1,  3v2  ≥   v1,

Example: Take d=3, so looking in  R3.
Linear equations:                                v3  = 0
Inequalities                                         v1  ≥  0,  2v1 - v2  ≥  0, 3v2  ≥   v1  

Find all integer vectors (v1, v2, v3) satisfying these equations.  

u1

Cone of Solutions

w1

w2

u23. Clear denominators to get
integer vertex solutions w1  and w2.

Solution:  Take any integer vector 
(v1, v2, v3) with v3  = 0, v2  ≤  2v1,  3v2  ≥   v1.

w1 = < 3, 1, 0 >,   w2 = < 1, 2, 0 >

u1 = < 3/4, 1/4, 0 >, u2 = < 1/3, 2/3, 0 >

2. Replace inequality 3v2   ≥   v1  with
equality 3v2  =   v1    to find 
rational vertex solution u2  (and u1).



Integer Linear Programming
Claim:  Every solution in the cone is a finite integer linear combination
of finitely many fundamental integral solutions.  (The Hilbert Basis).   

u1

Cone of Solutions

w1

w2

u2

Note:  Not all solutions are integer linear combinations of w1 and w2.

3. Clear denominators to get
integer vertex solutions w1  and w2.
w1 = < 3, 1, 0 >,   w2 = < 1, 2, 0 >

u1 = < 3/4, 1/4, 0 >, u2 = < 1/3, 2/3, 0 >

2. Replace inequality 3v2   ≥   v1  with
equality 3v2  =   v1    to find 
rational vertex solution u2  (and u1).

1.  Projectivize:  Add equation
v1 + v2  + v3 = 1



All solutions are rational linear combinations of w1 and w2.

All solutions are integer linear combinations of fi.
The fi  are the finitely many lattice solutions that are
rational linear combinations of w1 and w2 

fi  = q1w1 + q2w2 with 0 ≤  qi  ≤ 1.

u1

Cone of Solutions

w1

w2

u2 f1 f2

f3
f4

f5

f7

f6

Claim:  Every solution in the cone is an integer linear combination
of finitely many fundamental integral solutions.  (The Hilbert Basis).   
Note:  Not all solutions are integer linear combinations of w1 and w2.

Integer Linear Programming



Integer Linear Programming

All solutions are rational linear combinations of w1 and w2.

All solutions are integer linear combinations of fi.

fi  = q1w1 + q2w2 with 0 ≤  qi  ≤ 1.

u1

Cone of Solutions

w1

w2

u2 F1 F2

F3
f4

f5

f7

F6

Fundamental solutions lie within this parallelepiped.

Claim:  Every solution in the cone is an integer linear combination
of finitely many fundamental integral solutions.  (The Hilbert Basis).   
Note:  Not all solutions are integer linear combinations of w1 and w2.

Claim: Any integer solution in the cone is 
an integer linear combination
of fundamental solutions.

The fi  are the finitely many lattice solutions that are
rational linear combinations of w1 and w2 

A fundamental solution Fi is not a 
sum of two other solutions.

w1 = F6  =  < 3, 1, 0 >,   w2 = F3 = < 1, 2, 0 >

There are four fundamental solutions: F1, F2, F3, F6



Integer Linear Programming

u1

Cone of Solutions

w1

w2

u2

v

F1 F2

F3
f4

f5

f7

F6

All solutions are rational linear combinations of w1 and w2.

Claim: Any integer solution in the cone is 
an integer linear combination
of fundamental solutions.

All solutions are integer linear combinations of fi.

fi  = q1w1 + q2w2 

Fundamental solutions lie within this parallelepiped.

Claim:  Every solution in the cone is an integer linear combination
of finitely many fundamental integral solutions.  (The Hilbert Basis).   
Note:  Not all solutions are integer linear combinations of w1 and w2.

fi  = q1w1 + q2w2 with 0 ≤  qi  ≤ 1.

The fi  are the finitely many lattice solutions that are
rational linear combinations of w1 and w2 

Example: v

A fundamental solution Fi is not a 
sum of two other solutions.



Integer Linear Programming

Example: v

u1

Cone of Solutions

w1

w2

u2

v

F1 F2

F3
f4

f5

f7

F6

All solutions are rational linear combinations of w1 and w2.

All solutions are integer linear combinations of fi.

v  - F3   =  F2

v   =  F2  +  F3

Claim:  Every solution in the cone is an integer linear combination
of finitely many fundamental integral solutions.  (The Hilbert Basis).   
Note:  Not all solutions are integer linear combinations of w1 and w2.

Claim: Any integer solution in the cone is 
an integer linear combination
of fundamental solutions.

fi  = q1w1 + q2w2 with 0 ≤  qi  ≤ 1.

The fi  are the finitely many lattice solutions that are
rational linear combinations of w1 and w2 

Non-fundamental solutions are sums of smaller solutions.

A fundamental solution Fi is not a 
sum of two other solutions.
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Theorem.  
There are finitely many fundamental solutions F1, …, Fk such that any 
integer solution w is an integer linear combination of these solutions:

w = n1F1 + n2F2 + …  + nkFk  

for integers  n1, n2,…  ,  nk  > 0.  
Moreover there is a procedure to construct these solutions.

A solution vector F in Zd  that cannot be written as a sum of two non-zero 
normal vectors in Zd,  F ≠ A +  B, is called fundamental.                          

Summary - Integer Linear Programming

Take a collection of linear equations in Rd with integer coefficients, such as 
vi + vj - vk - vl = 0, and inequalities, such as vi >  0, that describe a 
pointed cone in Rd.

We will revisit this construction when we look at computational complexity.



Simple example - Fundamental Normal curves

A triangulation of S2 with 4 triangles.  
There are many normal curves.  
Seven are fundamental.    
Which ones? 



Simplest example

Exercise: This normal curve is not 
fundamental. It is a sum of two 
fundamental curves.Which ones?

A triangulation of S2 with 4 triangles.  
There are many normal curves.  
Seven are fundamental.    
Which ones? 



3. If a solution exists for a problem we are interested in (such as an 
unknotting disk or a splitting 2-sphere) then a solution exists among the 
fundamental surfaces.

We have shown that 
1. There is a 1-1 correspondence between normal curves and normal vectors.
2. All normal vectors are a sum of a finite number of fundamental normal 

vectors, and this finite “Hilbert Basis” can be constructed algorithmically.
Next we show:

Following Haken, we then obtain an algorithm with the following steps:
1. Compute the fundamental solutions to the integer linear equations determined by 
our problem.
2. Check if any of this finite collection of surfaces solves our problem.

We look at an example algorithm for curves on a surface:

Curves and Normal Vectors

This applies to a large number of 3-manifold algorithms.



Q

P
Sample Question:
Is there a curve in F 
connecting boundary 
points P and Q?

Example - A Normal Curve Algorithm

Q

P



Q

P

Equivalent Question: Is there an integer vector in Z+3t satisfying the matching equations 
with  v3  = 1 and v15  = 1, and with all other variables that meet the boundary equal to zero?

Sample Question:
Is there a curve in F 
connecting boundary 
points P and Q?

A Normal Curve Algorithm

Q

P

v3

v15

P

Q

P

Q
v15

v3



Q

P

An Algorithm
1.  Construct all Fundamental Solutions   (There are finitely many and they can be 

constructed in finite time.  We will see how long this takes later.)
2. Check whether any of the Fundamental Solutions satisfies v3  = 1 and v15  = 1 

and all other variables meeting the boundary equal zero.
3. If yes, output “YES”. Otherwise output “NO”.

Sample Question:
Is there a curve in F 
connecting boundary 
points P and Q?

A Normal Curve Algorithm

Q

P

Equivalent Question: Is there an integer vector in Z+3t satisfying the matching equations 
with  v3  = 1 and v15  = 1, and with all other variables that meet the boundary equal to zero?



Q

P

To show the algorithm does what it claims 
Need to check: If there is a curve connecting P and Q then there is a Fundamental Normal 
Curve with the same property.

Sample Question:
Is there a curve in F 
connecting boundary 
points P and Q?

A Normal Curve Algorithm

Q

P

An Algorithm
1.  Construct all Fundamental Solutions   (There are finitely many and they can be 

constructed in finite time.  We will see how long this takes later.)
2. Check whether any of the Fundamental Solutions satisfies v3  = 1 and v15  = 1 

and all other variables meeting the boundary equal zero.
3. If yes, output “YES”. Otherwise output “NO”.

Equivalent Question: Is there an integer vector in Z+3t satisfying the matching equations 
with  v3  = 1 and v15  = 1, and with all other variables that meet the boundary equal to zero?



Proof. Normalization gives a normal curve A with endpoints P and Q. We show 
that we can find such a normal curve A that is fundamental. 
Consider the integer vector A associated to this curve. Pick A to have smallest 
weight among all normal curves from P to Q. 

Claim. A is fundamental. 
Suppose for contradiction that  A = B + C.  Then one of  B or  C has boundary at the 
points P and Q.  Moreover  wt(A) = wt(B) + wt(C), so each of B and C has smaller 
weight than A. This contradicts the assumption that A has smallest weight.
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Sample Question:
Is there a curve in F 
connecting boundary 
points P and Q?

A Normal Curve Algorithm

To show the algorithm does what it claims 
If there is a curve connecting P and Q then there is a Fundamental Normal Curve with the 
same property.
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regular sum



Certain surface types arise in the process of cutting a 3-manifold into simpler pieces.

Cutting along 2-spheres gives  3-manifolds that are prime.

From Curves to Surfaces



Certain surface types arise in the process of cutting a 3-manifold into simpler pieces.

Cutting along spheres gives  
3-manifolds that are prime.

Cutting along disks gives pieces  
with simpler boundary.

Surfaces in 3-Manifolds
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Certain surface types arise in the process of cutting a 3-manifold into simpler pieces.

Cutting along spheres gives  
3-manifolds that are prime.

Cutting along compressible surfaces can 
 make a 3-manifold more complicated.

Cutting along compressing disks gives pieces  
with simpler boundary.

Cutting along incompressible surfaces  
eventually cuts a manifold into 3-balls.

Surfaces in 3-Manifolds
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Normal surfaces give an efficient method to describe surfaces 
in 3-manifolds.

As with curves, the surfaces that most interest topologists can 
be deformed into normal surfaces.

Surfaces can be complicated.

Normal Surfaces in 3-Manifolds
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Definition. Take a manifold M with a fixed triangulation.
A normal surface is a surface that intersects each tetrahedron 
in a finite collection of disjoint triangles and quadrilaterals

Normal Surfaces


