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Definition. Take a manifold M with a fixed triangulation.
A normal surface is a surface that intersects each tetrahedron 
in a finite collection of disjoint triangles and quadrilaterals

Normal Surfaces



�2

Definition. A normal surface is a surface that intersects each tetrahedron in 
a finite collection of triangles and quadrilaterals.

Normal Surfaces
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1 5 76

Each tetrahedron admits four types of triangle and three types of quadrilateral.
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Definition. A normal surface is a surface that intersects each tetrahedron in 
a finite collection of triangles and quadrilaterals.

Normal Surfaces

2

3
4

1 5 76

Distinct quadrilateral types separate different pairs of vertices. 
Distinct types cannot be made disjoint.  They must intersect.

An embedded surface can only have one type of quadrilateral in each 
tetrahedron.

Each tetrahedron admits four types of triangle and three types of quadrilateral.
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Definition. A normal surface is a surface that intersects each 
tetrahedron in a finite collection of disjoint triangles and 
quadrilaterals.

Normal Surfaces
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There can be many parallel copies of each type of triangle 
and quadrilateral.  These are counted by a vector with 
seven coordinates.

(1, 6, 2, 0, 1, 0, 0)
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Quadrilateral types
Distinct quadrilateral types must intersect. So in the correspondence between 
embedded surfaces and vectors, we look at vectors for which at least two of 
the three quadrilateral coordinates in each tetrahedron are zero

This causes a bookkeeping issue.  To avoid dealing with it, we consider 3t 
special cases of our problem.  In each tetrahedron, we look at normal 
surfaces that have one choice of quadrilateral type specified.
This multiplies the complexity of our problem by 3t, an exponential increase. 
All other aspects of problems including UNKNOTTING and SPLIT LINK 
are polynomial (Casson).  This step is the only obstacle in getting Haken’s 
algorithm to polynomial running time.

(1, 6, 2, 0, 1, 0, 0)
6

21

1
Set these two quadrilateral 
coordinates to be zero.
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Normalization

Which classes?   
We first look at how to turn an arbitrary surface into a normal surface.

Many classes of surfaces in a triangulated 3-manifold can be deformed 
until they are normal.



Normalization
Theorem  Any surface F in a triangulated 3-manifold M can be transformed 
to a normal surface by a sequence of the following moves:
1. Isotopy
2. Compression and boundary-compression
3. Eliminating components lying inside a single tetrahedron.
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Normalization

Compression of a surface F ⊂ M
Boundary-compression of a surface 
(F, ∂F)  ⊂ (M, ∂M) 

∂M

∂F

F

F

Compressing disk

Disk in M with boundary partly on
F and partly on ∂M.

F

∂F

∂M

Boundary-compressing disk

Theorem  Any surface F in a triangulated 3-manifold M can be transformed 
to a normal surface by a sequence of the following moves:
1. Isotopy
2. Compression and boundary-compression
3. Eliminating components lying inside a single tetrahedron.

Compression
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Normalization

Compressing disk

Boundary-compressing disk

Theorem  Any surface F in a triangulated 3-manifold M can be transformed 
to a normal surface by a sequence of the following moves:
1. Isotopy
2. Compression and boundary-compression
3. Eliminating components lying inside a single tetrahedron.
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Normalization

A series of such simplification moves yields a normal surface.

Theorem  Any surface F in a triangulated 3-manifold M can be transformed 
to a normal surface by a sequence of the following moves:
1. Isotopy
2. Compression and boundary-compression
3. Eliminating components lying inside a single tetrahedron.
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A surface can intersect a tetrahedron in 
a complicated way.

1. Eliminate intersection curves contained in a face of a tetrahedron.
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A surface can intersect a tetrahedron in 
a complicated way.

1. Eliminate intersection curves contained in a face of a tetrahedron.
2. Eliminate curves that meet an edge of a tetrahedron once.



Normalization
Proof.  Perform a series of moves on F that 
1. Eliminate curves of intersection with a tetrahedron face by compression.
2. Eliminate arcs of intersection with a tetrahedron face by a boundary
compression.

3. Not done



More Normalization
Isotop  F to eliminate pairs of intersection points with a single tetrahedron 
edge.  (If there are several, eliminate an innermost pair first)



Normalization
Proof.  Perform a series of moves on F that 
1. Eliminate curves of intersection with a tetrahedron face by compression.

3. Isotop  F to eliminate pairs of intersection points with a single
 tetrahedron edge.  (If there are several, innermost pair first). 

2. Eliminate arcs of intersection with a tetrahedron face by a boundary
compression.



More Normalization
Isotop  F to eliminate pairs of intersection points with a single tetrahedron 
edge.  (If there are several, eliminate an innermost pair first)



Proof.  Perform a series of simplifying moves on F. A connected surface 
within a tetrahedron that intersects any edge of the tetrahedron in more than 
one  point admits a compression, or boundary compression, or an isotopy 
that reduces its weight. These moves each reduce the pair (weight, number of 
curves of intersection of F with faces of the triangulation).  So we eventually 
stop. These moves each reduce the pair (weight, number of curves of 
intersection of F with faces of the triangulation).  So we eventually stop. A 
connected surface in a tetrahedron that is not compressible and not
boundary compressible and which intersects any edge of the tetrahedron 
in at most one point is a triangle or a quadrilateral. 

We end up with a normal surface, (possibly empty).

Theorem  Any surface F in a triangulated 3-manifold M can be transformed 
to a normal surface by a sequence of the following moves:
1. Isotopy
2. Compression and boundary-compression
3. Eliminating components lying inside a single tetrahedron.

Normalization
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Origins of Normal Surfaces
The problem of understanding essential 2-spheres led to the original 
definition of normal surfaces by Kneser (1930).

Theorem (Kneser) 
A closed 3-manifold M has a connect sum decomposition into 
prime components, 

M =  M1 # M2 # . . . # Mk                          with Mi prime, 1 ≤ i ≤ k.

A manifold M is prime if it is not a connect sum.  
This is equivalent to having every 2-sphere in M bound a ball,  
(except for two cases: S1 x S2  and S1 x S2.)   
Note that S3 is prime (Alexander’s theorem).

~
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S

~
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Origins of Normal Surfaces
The problem of understanding essential 2-spheres led to the original definition  
of normal surfaces by Kneser (1930).

Theorem (Kneser) 
A closed 3-manifold M has a connect sum decomposition into prime components, 

M =  M1 # M2 # . . . # Mk                          with Mi prime, 1 ≤ i ≤ k.

A manifold M is prime if it is not a connect sum.  
This is equivalent to having every 2-sphere in M bound a ball, (except for two cases: 
S1 x S2  and S1 x S2.)  Note that S3 is prime (Alexander’s theorem).~
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Origins of Normal Surfaces
The problem of understanding essential 2-spheres led to the original definition  
of normal surfaces by Kneser (1930).

Theorem (Kneser) 
A closed 3-manifold M has a connect sum decomposition into prime components, 

M =  M1 # M2 # . . . # Mk                          with Mi prime, 1 ≤ i ≤ k.

A manifold M is prime if it is not a connect sum.  
This is equivalent to having every 2-sphere in M bound a ball, (except for two cases: 
S1 x S2  and S1 x S2.)  Note that S3 is prime (Alexander’s theorem).~

Proof  A set of disjoint 2-spheres is independent if no pair are parallel, and no subset 
bounds a punctured ball.  A connect sum decomposition gives k-1 independent 2-spheres.

Question: How many 2-spheres can there be in an independent set?
Lemma 1:   In an oriented M with t 3-simplices, the size of an independent 
set of 2-spheres is at most 7t.

Kneser’s Theorem follows when we answer:

So the number k of prime summands is at most 7t-1.

The 2-spheres in a connect sum decomposition 
are independent.
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Lemma 1: In a 3-manifold M that is triangulated with t 3-simplices, the size of an 
independent set of 2-spheres is at most 7t.

Lemma 2: In an oriented 3-manifold M triangulated with t 3-simplices, the number 
of disjoint, orientable normal 2-spheres is at most 7t. 

Follows from:

Lemma 3: If there is an independent set of k 2-spheres, then there is an independent set of k 
normal 2-spheres.

and

Counting Prime Components
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Lemma 2: In an oriented 3-manifold M triangulated with t 3-simplices, the 
number of disjoint, orientable normal 2-spheres is at most 7t. 
Proof: Let G be a maximal family of disjoint normal 2-spheres, with no pair 
parallel. Some of these (at most t) are vertex linking 2-spheres.  

Each tetrahedron T meets G in a collection of triangles and quadrilaterals. The 
complement T-G consists of a collection of product regions (triangle x I and 
quadrilateral x I) and at most two other “bad” regions not meeting a vertex. 
The total number of bad regions is at most 2t.  

Each oriented normal sphere in G meets at least one of the bad regions 
(contains a red face), except perhaps for vertex linking 2-spheres. Otherwise 
the sphere would be parallel to another sphere on one side or the other. 

The bad regions have a total of at most 6t red faces. So there are at 
most 6t spheres in addition to at most t vertex-linking 2-spheres, for a 
total of 7t.

Counting Disjoint Normal Surfaces   

“bad” regions

product regions

product regions
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Lemma 3: If there is an independent set of n 2-spheres in M, then there is an 
independent set of n normal 2-spheres.

Proof: The collection of 2-spheres can be normalized by isotopy and compression. 

Isotopy:  Just moves things around.
Compression:  Compressing a 2-sphere can change the independent set, but 
does not decrease the number of 2-spheres in it, since the union of two punctured  
3-balls along a disk is a punctured 3-ball.  If both S1 and S2 are dependent, then so 
is S.

Counting Disjoint Normal Surfaces   

Normalizing does not decrease the number of independent 2-spheres. 

Theorem (Kneser) 
A closed 3-manifold M has a connect sum decomposition into prime components: 
M =  M1 # M2 # . . . # Mk                          with Mi prime, 1 ≤ i ≤ k.
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Normal Surfaces in Algorithms
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Triangulate a tetrahedron containing a knot K so that the knot 
lies on the edges. This gives a finite combinatorial description.

Unknotting

Subdivide this triangulation and remove a regular neighborhood of 
K.  This gives a 3-manifold homeomorphic to the knot complement, 
S3 - K  (or S3\K).  This manifold MK has a torus boundary.

MK = S3\K = ??
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Triangulate a tetrahedron containing a knot K so that the knot 
lies on the edges. This gives a finite combinatorial description.

An Unknotting Algorithm

Subdivide this triangulation and remove a regular neighborhood of 
K.  This gives a 3-manifold homeomorphic to the knot complement, 
MK  (or S3\K).  This manifold MK has a torus boundary.

The knot K is unknotted if and only if this torus is compressible.

MK = S3\K = ??
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Normal Surfaces and Knots

Question: Starting from a knot with n-crossings, how many tetrahedra are 
needed to form a simplicial complex with the knot embedded on its edges?

This type of question becomes important when we study
the running time (computational complexity) of algorithms.
For now we just need to observe the number can be bounded explicitly 
with some work.
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Normal Surfaces and Knots

Question: Starting from a knot with n-crossings, how many tetrahedra are 
needed to form a simplicial complex with the knot embedded on its edges?

Lemma  (H-Lagarias-Pippenger, 1999) 
Given a knot diagram D with n crossings, one can construct in time 
O(n log n) a combinatorial triangulation of S3 using at most 
253,440(n+ 1) tetrahedra, which contains a good triangulation of MK.



In each tetrahedron, a normal surface is encoded by 7 integers.  
These count the number of each of the four triangle types and 3 
quadrilateral types.  The above surface produces a vector with 
7 entries:

(1, 6, 2, 0, 1, 0, 0)

Repeating for each of t tetrahedra gives 7t integers.

6

21

1

Normal Surface to Vector
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Normal surfaces give very efficient descriptions of a surface.
Exponentially better than “standard” descriptions. 

(1, 6, 2, 0, 1, 0, 0)
The number of vertices in the above surface grows 
exponentially faster than the size of this vector. 
This gives a very efficient surface description.

Efficient Representations

6

21

1
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(v1, v2, v3, …,  v7t)

These vectors are not arbitrary.
1. They have integer entries
2. Each entry is non-negative
3. The vectors for two adjoining 

tetrahedra match up along their 
common face.

A spanning disk for a knot in MK is 
described by a vector.

Normal Disks for Knots
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One type of quadrilateral and one type of triangle contribute to edges of this type on this face 
of a tetrahedron.  The number of such edges matches along adjacent tetrahedra.

Matching Equations
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To fit together to give a surface, pieces must match up across 
tetrahedra with common faces.
This gives linear equations for the integer coordinates of the 
vector (v1, v2, v3, ...  v7t) of the form:
             vi+vj = vk+vl                with      vi > 0.   

This again leads to integer linear programming.

Matching Equations

One type of quadrilateral and one type of triangle contribute to edges of this type on this face 
of a tetrahedron.  The number of such edges matches along adjacent tetrahedra.
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(v1, v2, v3, ...  v7t) in Z+7t                       7t variables
vi+vj = vk+vl                                         6t equations
vi > 0                                                     7t inequalities

Starting with any triangulation having t tetrahedra, we get:

Matching Equations

glue

vj = 1v1 = 1 vk = 2 vl = 0

Integer linear programming implies that there are finitely many 
Fundamental Solutions, and these can be explicitly constructed.  

Note that we haven’t yet specified a question or algorithm.



As with curves, there is a correspondence between 
1. Sums of normal vectors (algebra)
2. Sums of normal surfaces (geometry)
 called Haken sum or regular sum

Geometric and Algebraic Sums

Algebraic sums of normal vectors

< …., 0, 1, 0, 0, 0, 0, …   >  

+  


< …., 0, 1, 0, 0, 0, 0, …   >

   < …., 0, 2, 0, 0, 0 ,0,…   > 
=

A  +  B

A
B

Haken sum



In all cases, there is exactly one 
choice that gives a normal surface.

This choice for cut and 
paste produces a pair of 
disks that is not normal. 
We do not want to cut 
and paste in this way. 

Irregular Sum Haken Sum



In all cases, there is exactly one 
choice that gives a normal surface.

This choice for cut and 
paste produces a pair of 
disks that is not normal. 
We do not want to cut 
and paste in this way. 

Irregular Sum Haken Sum

At this point Saul will ask about quadrilaterals.



In all cases, there is exactly one 
choice that gives a normal surface.

This choice for cut and 
paste produces a pair of 
disks that is not normal. 
We do not want to cut 
and paste in this way. 

Irregular Sum Haken Sum

At this point Saul will ask about quadrilaterals. Unless he’s tired.



Euler characteristic is additive under the Haken sum of two normal surfaces

Haken (geometric) sums and Euler characteristic

 Euler characteristic  is computed as V-E+F

If   v  =  A  +  B  

then 

𝛘(v) =  𝛘(A) + 𝛘(B) 

since the vertices, edges, faces are counted 
once in each case.

A  +  B

A
B



Haken (geometric) sums and weight

Weight is additive under the Haken sum of two normal surfaces

If   v  =  A  +  B  

then 

wt(v) =  wt(A) + wt(B) 

since the number of times that the surfaces 
cross the 1-skeleton doesn’t change.

A  +  B

A
B
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Reductions of Unknotting

These and many similar problems can be solved with normal surface theory. 
The algorithms takes the form: 
1. Fix a triangulation of M.  
2. Construct the Fundamental Normal Surfaces in this triangulation.   
3. Check if one of these has the sought after property. 

Justification of the algorithm requires a proof that the Fundamental Normal 
Surfaces contain one of the sought after surfaces, if it exists.

The unknotting problem is a consequence of (reduction from) 
Boundary Compressible
Instance: A triangulated 3-manifold with boundary M.  
Question: Is the boundary of M compressible? 

We will see that Unknotting is also a reduction from the problem
Split Link (Schubert 1961) 
Instance: A link L in S3 with complement ML.   
Question: Does ML contain a 2-sphere that separates the components of L?
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Boundary Conditions for Unknotting

When we look for a normal disk whose boundary is a knot, we 
need to avoid trivial disks that don’t span the knot.

We are searching for disks whose boundaries run once over the 
knot.  These disks have boundary a longitude on the torus boundary 
of MK = S3-K.

Trivial Normal Disk. 
(A hemisphere linking  
a boundary vertex.)

∂M

compressing 
disk trivial 

disk



�44

Boundary Conditions for Unknotting

We can ensure that the boundary of the normal vectors we solve for run 
once around a longitude by setting certain variables equal to zero, namely 
all triangles and quadrilaterals meeting the boundary except for  a 
collection that runs around a longitude (green) 

∂M

The blue annulus on ∂M contains a longitude
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Boundary Conditions for Unknotting

When we look for a disk whose boundary is a knot, we can avoid generating 
boundary parallel disks  by setting some variables vi = 0. We can set all 
variables corresponding to triangles or quadrilaterals that meet ∂M to zero 
(red), except for those along a longitude, which we allow to have any value.

Interior Tetrahedron Tetrahedron meeting ∂M on a face

0

0

∂M
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Boundary Conditions for Unknotting

When we look for a disk whose boundary is a knot, we can avoid generating 
boundary parallel disks  by setting some variables vi = 0. We can set all 
variables corresponding to triangles or quadrilaterals that meet ∂M to zero 
(red), except for those along a longitude, which we allow to have any value.

Alternately, we can avoid worrying about boundary conditions by 
reformulating the unknotting problem as a problem about closed surfaces:  

Interior Tetrahedron Tetrahedron meeting ∂M on a face

0

0

∂M

We may need to subdivide the triangulation to realize a longitude this way.
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SPLIT LINK
Problem: SPLIT LINK  
Instance: A link L in S3 with complement ML.   
Question: Does ML contain a 2-sphere that separates the components of L?

Given a knot K, create a 2-component link L by taking a pushed-off 
copy of K (chosen so that the linking number is zero).   

Claim. Unknotting for K reduces to Split Link for L

K is unknotted if and only if there is a 2-sphere in S3-L  separating the two 
components of L.



�48

Problem: SPLIT LINK 
Instance: A link L in S3-L with complement ML.   
Question: Does ML contain a 2-sphere that separates the components of L?

Given a knot K, create a 2-component link L by taking a pushed-off copy of K 
(chosen so that the linking number is zero).   

Claim. Unknotting for K reduces to Split Link for S3-L

If there is a 2-sphere in S3-L  separating the two components of L, the 2-sphere 
intersects the annulus between the two components of L in an essential curve.  
This curve is isotopic to K and bounds a disk.  So K is unknotted.

SPLIT LINK
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An Algorithm for SPLIT LINK

The Algorithm
1. Construct all fundamental solutions to the normal surface equations.
2. Check whether any of the fundamental solutions has 𝛘(v) =  2 and 

separates components of L.   If one does, then answer “YES”.   
Otherwise answer “NO”.  

Proof that the algorithm works as claimed:
Need to show that if there is a splitting 2-sphere then there is a 
fundamental vector v that represents a splitting 2-sphere.  There are 
finitely many fundamental solutions and each can be checked to see if 
it is a 2-sphere that separates components of L.

SPLIT LINK  
Instance: A link L in S3 with complement ML.   
Question: Does ML contain a 2-sphere that separates the components of L?

Corollary:  UNKNOTTING
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Proof: If L is split then ML contains a splitting 2-sphere.
Step 1. Normalize:  If L is split then ML = S3 - L contains a normal splitting 2-sphere.

The normalization procedure shows that any surface in a triangulated 3-manifold can be 
transformed to a normal surface by a  sequence of the following moves:
1. Isotopy in ML 

2. Compression and boundary-compression in ML

3. Eliminating components lying inside a single tetrahedron.
Start with a splitting 2-sphere S.  Isotopy moves it around, but it still separates components of L.
Boundary compression only applies to surfaces with boundary.  
If S compresses into a pair of 2-spheres, then at least one of these is also a splitting 2-sphere. 

So normalization yields a normal splitting 2-sphere in ML.

Lemma: If L is split then ML contains a fundamental normal splitting 2-sphere.

A fundamental normal surface has associated vector v that cannot be written as a sum of  
two non-zero normal vectors.     v ≠ A + B.

Fundamental Surfaces
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Lemma: If L is split then ML contains a fundamental normal splitting 2-sphere.

Step 2. Fundamentalize:  If ML contains a normal splitting 2-sphere then it contains a 
fundamental normal splitting 2-sphere.
Choose a normal splitting 2-sphere S with normal vector v = (v1, v2, v3, ...  v7t), of smallest 
weight among all normal splitting 2-spheres.  This 2-sphere is fundamental.
Suppose v is not fundamental. Then  v =  A + B for some normal vectors A and B.

Lemma (Schubert):   
Let v represent a connected normal surface and suppose that A and B represent two 
normal surfaces and v is the Haken sum of A and B along the collection of curves 
A∩B,   v =  A + B.  
If A and B are chosen to minimize |A∩B| then  
i. A and B each represent connected surfaces and  
ii. No curve of intersection of A∩B is separating on both A and on B.

Step 2. Fundamentalize



�52

Proof  
i. Suppose not. Then we can write B =   B1 + B2 + B3 + … Bk where each Bi is a 
connected normal surface, k>2. Take Haken sum along intersection curves of ∪Bi until 
obtaining exactly two intersecting embedded normal surfaces C and D. 

Then v = C + D and  |C∩D| < |A∩B|, a contradiction.

Schubert’s Lemma
Lemma (Schubert 1961):   
Let v be a normal vector representing a connected normal surface. Suppose that A and 
B represent two normal surfaces and v is the Haken sum of A and B,   v =  A + B.  
If A and B are chosen to minimize |A∩B| then  
i. A and B each represent connected surfaces and  
ii. No curve of intersection of A∩B is separating on both A and on B.

Haken Sum along all  
curves gives us v.
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Proof  
i. Suppose not. Then we can write B =   B1 + B2 + B3 + … Bk where each Bi is a 
connected normal surface, k>2. Take Haken sum along intersection curves of ∪Bi until 
obtaining exactly two intersecting embedded normal surfaces C and D. 

Then v = C + D and  |C∩D| < |A∩B|, a contradiction.

Schubert’s Lemma
Lemma (Schubert):   
Let v be a normal vector representing a connected normal surface. Suppose that A and 
B represent two normal surfaces and v is the Haken sum of A and B,   v =  A + B.  
If A and B are chosen to minimize |A∩B| then  
i. A and B each represent connected surfaces and  
ii. No curve of intersection of A∩B is separating on both A and on B.

Haken Sum along all  
curves gives us v.
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Schubert’s Lemma
Lemma (Schubert):   
Let v represent a connected normal surface and suppose that A and B represent two 
normal surfaces and v is the Haken sum of A and B along the collection of curves 
A∩B,   v =  A + B.  
If A and B are chosen to minimize |A∩B| then  
i. A and B each represent connected surfaces and  
ii. No curve of intersection of A∩B is separating on both A and on B.
Proof  
ii. If  a curve of A∩B separates on both, then take the Haken sum along this curve.  
This results in a normal surface with two “components”, possibly immersed. Take 
further Haken sum along intersection curves for as long as it is possible to do so 
without getting a connected surface.

Doing all Haken sums result in a connected surface representing v. 
Each Haken sum changes the number of “components” by at most one. 
So Haken sums along some subset of all the intersection curves results in exactly two 
embedded normal surfaces C and D:                         v =  C + D     
But |C∩D| < |A∩B|, a contradiction.
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Lemma: If L is split then ML contains a fundamental normal splitting 2-sphere.
Step 2. Fundamentalize:  If ML contains a normal splitting 2-sphere then it contains a 
fundamental normal splitting 2-sphere.

Choose a normal splitting 2-sphere S with normal vector v = (v1, v2, v3, ...  v7t), of  
smallest weight among all normal splitting 2-spheres. 
Suppose v is not fundamental. Then  v =  A + B for some normal vectors A and B. 
We can assume that each is connected by choosing to minimize |A∩B|. 
Since Euler characteristic adds under geometric sum,  
𝛘(v) =  𝛘(A) + 𝛘(B) 
2      =  𝛘(A) + 𝛘(B) 
So one of A and B represents a normal 2-sphere (say A) and the other a normal torus. 
Since each of A and B has smaller weight than v, A must represent a non-splitting sphere.  

Fundamentalization

A has smaller weight than v 
Can’t happen

A is not a splitting sphere 
Can this happen?

A B
B

A
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Lemma: If L is split then ML contains a fundamental normal splitting 2-sphere.
Step 2. Fundamentalize:  If ML contains a normal splitting 2-sphere then it contains a 
fundamental normal splitting 2-sphere.

Fundamentalization

 (2-sphere)

Euler Characteristic

Since the sphere A does not split the 
link, we can replace one part of A with 
another without affecting the splitting 
properties of the resulting surface. In 
particular, we can use a least weight 
compressing disk twice.

If A is not a splitting sphere then the 
torus B can be surgered to find a 
splitting  2-sphere of smaller weight 
than v. 

But is it normal?
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Lemma: If L is split then ML contains a fundamental normal splitting 2-sphere.
Fundamentalization

If irregular sum gives a component which is 
a splitting 2-sphere of smaller weight then 
v, then this component can be normalized to 
produce a splitting 2-sphere of even smaller 
weight.  This leads to a contradiction.

Irregular sum

If one of these is part of a splitting 2-sphere, it can 
be normalized to further reduce its weight. 

Conclude:  A normal splitting 2-sphere of smallest weight is fundamental.
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An Algorithm for SPLIT LINK

The Algorithm
1. Construct all fundamental solutions.
2. Check whether any of the fundamental solutions satisfy 𝛘(v) =  2 

and separates components of L.   If one does, then answer “YES”.   
Otherwise answer “NO”.  

Proof that the algorithm works as claimed:
If there is a splitting 2-sphere then there is a fundamental vector v
that represents a splitting 2-sphere. A fundamental solution represents 
a 2-sphere if its Euler characteristic is two.  There are finitely many 
fundamental solutions, and each can be checked to see if it is a 2-
sphere that separates components of L.

SPLIT LINK  
Instance: A link L in S3 with complement ML.   
Question: Does ML contain a 2-sphere that separates the components of L?

Corollary:  UNKNOTTING


