
Minimal and normal surfaces

There is a correspondence between the theory of minimal surfaces in 
differential geometry and the theory of normal surfaces. 
We will explore the correspondence and use it to derive: 

Problem: 3-SPHERE RECOGNITION  
INSTANCE: A triangulated 3-dimensional manifold  M  
QUESTION: Is M homeomorphic to the 3-sphere?   
  
By Perelman’s work, this is equivalent to: 

Problem: SIMPLY CONNECTED 3-MANIFOLD  
INSTANCE: A triangulated 3-dimensional manifold  M  
QUESTION: Is M simply connected?   

We’ll also see how this correspondence leads to new isoperimetric inequalities. 



2-Sphere Recognition

Problem: 2-SPHERE RECOGNITION  
INSTANCE: A triangulated 2-dimensional manifold  M  
QUESTION: Is M homeomorphic to the 2-sphere?  

There is a simple and quick algorithm:   
1. Compute the Euler characteristic of M,   𝛘(M). 
2. Check that M is connected. 
3. If M is connected and 𝛘(M) = 2, output “Yes”. Otherwise output “No”.

This does not extend to 3-manifolds. 
All closed 3-manifolds have Euler characteristic zero. 
There is no known, simple, invariant that characterizes the 3-sphere.  
We give a different algorithm that does generalize from 2 to 3 dimensions.



2-Sphere Recognition with geodesics
Idea: Look at a maximal family G of disjoint separating geodesics on a surface. 
This family has certain properties on a 2-sphere that differ from its properties 
on any other surface. 
These properties can be used to characterize, or recognize, the 2-sphere.



Stability of Geodesics
A geodesic on a surface is a curve that is locally length minimizing.  Short curve segments 
minimize lengths among all curves connecting their endpoints.  But longer segments may 
not be length minimizing. 

A geodesic is stable if it cannot be homotoped to decrease its length, so that there is no 
shorter curve in some neighborhood. 

Otherwise it is unstable. 

(Similar ideas apply to minimal surfaces in a 3-manifold) 

 stable 

unstable

unstable



Stability of Geodesics

Unstable geodesics can be deformed to reduce length.  
Stable geodesics are length minimizing among nearby curves.

Lemma Every non-trivial homotopy class of curves contains a stable geodesic. 
Proof.  Take the shortest curve in the class. This is embedded in any metric.

Gorodnik



Generic Metrics
We work with generic metrics, where 
1. There are no families of parallel geodesics,  
2. A geodesic is either stable or it can be pushed off to decrease length  to 
either side.  

Any Riemannian metric can be perturbed a little to make it generic (bumpy) 
[B. White 1991]. 



Geodesics on a 2-Sphere

Properties of stable and unstable geodesics: 
Theorem Suppose F is a surface with a generic Riemannian metric and G is a maximal 
family of disjoint separating geodesics. 
1. If F is a 2-sphere then G  contains an unstable geodesic.   
2. No region of F-G has four or more boundary geodesics. 
3. A region  in F-G whose boundary is a single stable geodesic is a punctured torus. 
4. A region  in F-G whose boundary is a single unstable geodesic is a disk. 
5. A region in F-G with two boundary geodesics is an annulus whose boundary consists of 

one stable and one unstable geodesic. 
6. A region in F-G with three boundary geodesics is a “pair of pants” whose boundary 

consists of  three stable geodesics.  

These properties follow from the curve shortening flow  
(Gage, Hamilton, and Grayson.)



1. If F is a 2-sphere then G  contains an unstable geodesic.  

How can we find a geodesic on a 2-sphere?

If F is a 2-sphere then G  contains an unstable geodesic

Goes back to an argument of  Birkhoff 1917.



Take a family of curves sweeping out the 2-sphere and shorten 
each curve in the family.

Geodesics exist on a 2-sphere  



Geodesics exist on a 2-sphere  

Apply the curve shortening flow. Some curves shorten in the 
direction of a0 and others in the direction of a1.  Some curve a1/2 gets 
caught in the middle and converges to a geodesic.


 Gage-Hamilton (1986), Grayson (1989)



2.  No region of F-G has four or more boundary geodesics.
Assumes F is a surface and G is a maximal family of disjoint separating geodesics. 



No region has 4 or more boundary geodesics 

Proof: Join two boundary curves to form a new curve.  
Shrink the new curve to a geodesic or a point. The new curve is not 
homotopic to any of the four boundary curves, and not  null-homotopic, and 
thus must flow to a new geodesic. This contradicts maximality of G. 

 



No region has 4 or more boundary geodesics 

Join two boundary curves to form a new curve.  
Shrink the new curve to a new geodesic.  

 



No region has 4 or more boundary geodesics 

Join two boundary curves to form a new curve.  
Shrink the new curve to a new geodesic.  

 



Join two boundary curves to form a new curve.  
Shrink the new curve to a new geodesic. 

But we assumed the original family was maximal. 
So this type of region does not occur.

No region has 4 or more boundary geodesics 



No region has 4 or more boundary geodesics 

This works even if there is some genus in the region. 
The original family was not maximal. 



3. A region  in F-G whose boundary is a single stable geodesic is 
a punctured torus.

It can’t have genus greater than one, 
since there is a geodesic in every 
homotopy class, and so there would 
be a geodesic separating two handles.

Proof:  It can’t be a disk since 
Birkhoff’s argument implies there 
would be an extra unstable geodesic.

It can be, so it must be a torus with one 
boundary curve.



Proof:  Push the curve to one side, 
decreasing its length.  Keep pushing 
until it shrinks to a point or to a 
geodesic.  It must be to a point since 
the family is maximal, so this region 
is a disk.

4. A region  in F-G whose boundary is a single unstable geodesic is a disk



5. Regions with two boundary curves are annuli that have 
one stable and one unstable boundary geodesics. 



Regions with two boundary curves are annuli that have one 
stable and one unstable boundary geodesics. 



Not maximal. Not maximal. 

Regions with two boundary curves

There is only one possibility for two boundary curves.



6. A region in F-G with three boundary geodesics is a “pair of pants”  
whose boundary consists of  three stable geodesics.

Join two boundary curves. Must shrink to the 3rd geodesic.

There must be additional geodesics in this 
component of F-G if it has genus > 1.



Geodesics on a 2-Sphere

Properties of stable and unstable geodesics: 
Suppose F is a surface with a generic Riemannian metric and G is a maximal family of 
disjoint separating geodesics. 
1. If F is a 2-sphere then G  contains an unstable geodesic.   
2. No region of F-G has four or more boundary geodesics. 
3. A region  in F-G whose boundary is a single stable geodesic is a punctured torus. 
4. A region  in F-G whose boundary is a single unstable geodesic is a disk. 
5. A region in F-G with two boundary geodesics is an annulus whose boundary consists of 

one stable and one unstable geodesic. 
6. A region in F-G with three boundary geodesics is a ``pair of pants''  whose boundary 

consists of  three stable geodesics.  

Which of these can occur on a 2-sphere?



Properties of stable and unstable geodesics: 
Suppose F is a surface with a generic Riemannian metric and G is a maximal family of 
disjoint separating geodesics. 
1. If F is a 2-sphere then G  contains an unstable geodesic.   
2. No region of F-G has four or more boundary geodesics. 
3. A region  in F-G whose boundary is a single stable geodesic is a punctured torus. 
4. A region  in F-G whose boundary is a single unstable geodesic is a disk. 
5. A region in F-G with two boundary geodesics is an annulus whose boundary consists of 

one stable and one unstable geodesic. 
6. A region in F-G with three boundary geodesics is a ``pair of pants''  whose boundary 

consists of  three stable geodesics. 

Geodesics on a 2-Sphere

Note:  All regions are disks, annuli, or pairs of pants except Case (3). 

So F is gotten by gluing together disks, annuli, and pairs of pants along separating curves 
unless some region has boundary that is a single stable geodesic.

What surface can be gotten by gluing together disks, annuli, and pairs of pants 
along separating curves?



Geodesics on a 2-Sphere

What surface can be gotten by gluing together disks, annuli, and 
pairs of pants along separating curves?



Geodesics on a 2-Sphere

What surface can be gotten by gluing together disks, annuli, and 
pairs of pants along separating curves?

Only a 2-sphere



Geometric 2-Sphere Characterization
Theorem F is a 2-sphere if and only if G  satisfies: 
1. There is at least one unstable geodesic in G.    
2. No complementary region of F-G has boundary consisting of a single stable geodesic. 
Proof. Push the unstable geodesic to either side, decreasing its length.  Either it flows to a 
stable geodesic and gets stuck, or it flows to a point. In the first case it is a boundary 
component of  an annulus on that side, and in the second case it bounds a disk.

Look at adjacent regions. These glue together to form a tree of regions.  The surface F is a 2-
sphere if and only if each of these regions is a punctured sphere (disk with holes).  This 
happens exactly when no complementary region has boundary consisting of a single stable 
geodesic



Lemma: Suppose we cut a manifold M open along a collection 
of separating 2-spheres.

Then M is homeomorphic to a 3-sphere if and only if every 
component is homeomorphic to a “punctured” 3-ball
(a 3-ball with some 3-balls removed).

What about the 3-sphere?



Geometric 3-Sphere Characterization

Let G be the resulting family of minimal 2-spheres.  
M is a 3-sphere if and only if G satisfies the following conditions: 

1.There is at least one unstable minimal 2-sphere in G.  
2. No complementary region of M − G has boundary consisting of a single 

stable minimal 2-sphere.

Given a possible 3-sphere M with a generic Riemannian metric: 
1. Find a maximal family of disjoint, stable, separating minimal 2-
spheres.  
3. Find a maximal family of disjoint, unstable, separating minimal 2-
spheres in the complement of the first family.

Proof.  Similar to 2-sphere case, using 
results of Pitts, Simon, Smith, Meeks 
Yau on minimal 2-spheres.



Geometric 3-Sphere Characterization

Rubinstein’s idea:  
Make this an algorithm by replacing minimal surfaces with 
normal surfaces.

Normal surfaces play the role of minimal surfaces.  They are 
locally minimizes for weight. 

What plays the role of an unstable minimal surface in the 
discrete setting?



Almost Normal Surfaces

An almost normal surface intersects one 3-simplex in one octagon. It is 
normal everywhere else. These surfaces play the role of unstable  
minimal surfaces in our setting, with weight replacing area.

Another type of almost normal surface intersects one 3-simplex in 
a pair of tubed elementary disks. These aren’t needed in the  
3-sphere recognition problem.



Almost Normal Surfaces

An almost normal surface contains an octagon in one 3-simplex. It is 
normal everywhere else. These surfaces play the role of unstable  
minimal surfaces in our setting, with weight replacing area.

There is a way to push this octagonal piece to either of its two sides, in such  
a way that the weight decreases by two. But can’t push in both directions.



Barriers

When we push an almost surface S off to one side or the other, we get 
a new surface of smaller weight that may not be normal.  We can 
keep pushing, performing “normalization, until eventually we get to a 
normal surface or push S into a single tetrahedron.   

During the normalization process, S never starts intersecting new 
normal surfaces.  If S is initially disjoint from a normal surface N 
then it stays disjoint from N as it flows to a normal surface or a point. 
The disjoint normal surface N is a barrier.

N N

SS



(Following Rubinstein and Thompson) 
3-Sphere Recognition 
Instance: A collection of 3-simplices M with faces paired. 
Question: Is M homeomorphic to the 3-sphere?

1. Find a maximal collection of non-parallel separating fundamental normal 
2-spheres S*. 

2. Cut M open along S*. This gives three types of pieces.  
Type a: A 3-ball neighborhood of a vertex.  
(Every vertex is enclosed in such a piece.) 
Type b: A piece with more than one boundary component. 
Type c: A piece with exactly one boundary component, not of type a. 

3. For each Type c piece , compute all the fundamental almost normal 2-
spheres inside it. If each type c piece contains a fundamental almost normal 
2-sphere, then M is the 3-sphere. If some type c piece fails to contain a 
fundamental almost normal 2-sphere, then M is not the 3-sphere.

An Algorithm for recognizing the 3-sphere

  Why does this work?



Cut M open along a maximal collection of separating normal 2-
spheres.

1. M is homeomorphic to a 3-sphere if and only if every 
component is homeomorphic to a “punctured” 3-ball
(a 3-ball with some 3-balls removed).

Algorithm for recognizing the 3-sphere



Algorithm for recognizing the 3-sphere
Cut M along a maximal collection of separating 2-spheres. 

M is homeomorphic to a 3-sphere if and only if every component is 
homeomorphic to a punctured 3-ball.  Let’s look at the three types of 
regions in M-S*. 

Type a: A 3-ball neighborhood of a vertex.  
Every vertex is enclosed in such a piece and these are 3-balls.



Algorithm for recognizing the 3-sphere

Cut M along a maximal collection of separating 2-spheres. 

Type b: A piece X with more than one boundary component. 
These regions also are always 3-balls.



Algorithm for recognizing the 3-sphere

Cut M along a maximal collection of separating 2-spheres. 

Type b: A piece X with more than one boundary component. 
These regions also are always 3-balls.



Algorithm for recognizing the 3-sphere

Cut M along a maximal collection of separating 2-spheres. 

Type b: A piece X with more than one boundary component. 
These regions also are always 3-balls.



Algorithm for recognizing the 3-sphere

Cut M along a maximal collection of separating 2-spheres. 

Type b: A piece with more than one boundary component. 
These regions also are always 3-balls.



Algorithm for recognizing the 3-sphere
Type c: A region with one boundary component, not a vertex linking ball. 
If the region is a 3-ball, then we can foliate it with 2-spheres shrinking  
down to a point.  Each leaf of this foliation intersects the edges of the 
triangulation. We move these edges by an isotopy to minimize the 
maximum weight within the family of 2-sphere leaves.  This maximum 
weight is realized by a 2-sphere S that is in thin position.  

A. Thompson gave an argument that used thin position to prove that such a 
2-sphere is normal except in one tetrahedron, which it intersects in an 
octogonal piece.

Part of S

Other parts of S



Algorithm for recognizing the 3-sphere
Type c: A region with one boundary component, not a vertex linking ball.

If the region contains an almost normal 2-sphere S then we can push this 2-
sphere to either of its two sides, in such a way that the weight decreases by 
two.   

Keep pushing to decrease the weight.  This is the process of  “normalization” 
that we have seen before.  The process continues until S shrinks to a point or 
until S shrinks to a normal surface.

If S shrinks to a point when it is pushed off to one side, then it bounds 
a ball on that side.  If it shrinks to a normal sphere, then it must shrink 
to the unique normal 2-sphere on the boundary of the Type c region.  
Thus the almost normal 2-sphere must be boundary parallel on one 
side and bound a ball on the other side.  therefore the Type c region 
must be a 3-ball. 



Algorithm for recognizing the 3-sphere

We have shown that Type a and Type b regions are always 3-balls and that a 
Type c region is a 3-ball if and only if it contains an almost normal 2-sphere.

We have reduced the question of whether a 3-manifold is homeomorphic to a 3-
sphere to questions about normal  and almost normal 2-spheres in the manifold, 
which we can answer using Haken’s methods. 



Smooth Riemannian Manifolds Combinatorial Triangulated Manifolds

Geodesic Normal curve

Length or Area Weight

Stable minimal surface Normal surface

Unstable minimal surface Almost normal surface

Flow by mean curvature Normalization

A smooth S3 contains an unstable 
minimal S2 A PL S3 contains an almost normal S2

If ∂X is a stable S2 and int(X) contains an 
unstable S2 and no stable S2  ⇒  X = B3

∂X a normal S2 and int(X) contains an almost 
normal S2 and no normal S2 ⇒ X = B3

Minimal Surface - Normal Surface Correspondence



The correspondence between normal surfaces and minimal surfaces  
has more applications. It can be used to investigate classical problems in 
Differential Geometry.

Classical Isoperimetric Inequality:   
A curve 𝜸 in R2 bounds a disk D with  4πA <  L2. 

Equality holds if and only if 𝜸 is a circle.

Normal and minimal surfaces

What about if we are given an unknotted curve 𝜸 in R3?    
Is there a disk with   A <  f (L)  for some function f ?



The correspondence between normal surfaces and minimal surfaces  
has many more applications. It can be used to investigate classical problems in 
Differential Geometry.
Classical Isoperimetric Inequality:   
A curve 𝜸 in R2 bounds a disk D with  4πA <  L2. 
Equality holds if and only if 𝜸 is a circle.

Normal and minimal surfaces

Suppose we are given an unknotted curve 𝜸 in R3?    
Is there a disk with   A <  f (L)  for some function f ? 

1. There is an immersed disk with 4πA <  L2.                                      
(Andre Weil, 1926)     

2. There is an embedded surface with 4πA <  L2.                                   
(W. Blaschke, 1930) 

What bounds can we get for an embedded disk?



Normal and minimal surfaces

What bounds can we get on an embedded disk?

Theorem 1.  (H-Lagarias-Thurston, 2004) 
There is a constant C > 1 and a sequence of unknotted, smooth 
curves γn embedded in R3, each having length L  = 1, such that the 
area of any embedded disk spanning γn is greater than n.

Theorem 2.  
For any embedded closed unknotted smooth curve γ in R3 

 having length 
L and thickness r, there exists a smooth embedded disk of area A, having 
γ as boundary with 

where  C0 > 1 is a constant independent of γ, L and r.

A ≤ (C0)(L/r)2L2

(The thickness of a curve r is the radius of its tubular neighborhood.)

These results may not seem to connect to algorithms or normal surfaces. 
But Theorem 2 falls out of Haken’s Normal surface theory.
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Lower Bounds Is UNKNOTTING really hard?

Is the Haken algorithm an efficient approach to UNKNOTTING?

Are Fundamental Surfaces really complicated?
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Is UNKNOTTING really hard?

Is the Haken algorithm an efficient approach to UNKNOTTING?

Are Fundamental Surfaces really complicated?

Yes.

Spanning disks for some unknots cannot be less than exponentially 
complicated.

There are unknotted polygons in R3 that have n edges and that cannot be 
spanned by disks having fewer than cn triangles.

This is an example of a Lower Bound for a computational problem.
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K1
K3

Theorem (H-Snoeyink-Thurston) 
There exists a sequence of unknotted polygons Kn with 11n edges such that 
any disk spanning the unknot Kn contains at least 2n triangular faces. 

Spanning Disks can be Exponentially Complicated
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Proof:
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K1
K3

Spanning Disks can be Exponentially Complicated

Theorem (H-Snoeyink-Thurston) 
There exists a sequence of unknotted polygons Kn with 11n edges such that 
any disk spanning the unknot Kn contains at least 2n triangular faces. 
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Three curves in the sequence of unknots  Kn 
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α = σ1σ−1
2

How to construct Kn 

To construct K, start with this braid
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α = σ1σ−1
2

Start with a braid :

How to construct Kn 
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α = σ1σ−1
2
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Each Kn is the boundary of a standard embedded disk in R3.  
We will show that
1. This disk cannot be constructed with less than 2n flat triangles.
2. No other disk can do better. 

Spanning Disks for Kn

standard disks



Braids and surface diffeomorphisms

Associated to a braid is a diffeomorphism of a punctured disk.

α = σ1σ−1
2
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How can we understand the long term behavior of the sequence

ϕ, ϕ2, …
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c 
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Each iteration of 𝜑 more than doubles the number of times 
that the standard disk spanning the curve intersects B0.   

2a + 2b         6a + 8b   >   2 (2a + 2b)



�66

Each iteration of 𝜑 more than doubles the number of times 
that a disk spanning the curve intersects B0.   

2a + 2b  —> 6a + 8b > 2 (2a + 2b) 
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What if we looked at some other disk spanning Kn, rather than 
the standard disk.  Could it intersect B0 in less points?

Look at the level sets of a Morse function for some disk.
Type 1 and 2 critical points don’t affect the number of 
intersections with B0.   Type 3 do change this number, perhaps 
drastically.  But only one type 3 can occur.  So the argument 
applies below or above this critical point, which suffices for the 
estimate.
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From Complexity Theory to Differential Geometry

L = length of K
A = area of a disk with boundary K

K

Theorem. Curves in the plane satisfy the inequality

Is there a similar inequality for the area of disks spanning 
unknotted curves in R3 ?

A ≤
L2

4π
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Isoperimetric inequality

L = length of K
A = area of a disk with boundary KK

Theorem. Curves in the plane satisfy the inequality

Is there a similar inequality for the area of disks spanning 
unknotted curves in R3 ?

A ≤
L2

4π
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Theorem (H-Lagarias-Thurston) (2005)  
There is no isoperimetric inequality for disks spanning 
embedded curves in R3
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There is no isoperimetric inequality for disks spanning 
embedded curves in R3.

There is a sequence Kn of length-one, unknotted curves 
such that Kn does not bound a disk of area less than n.

K1 K3



Normal and minimal surfaces

What bounds can we get on an embedded disk?

Theorem 1.  (H-Lagarias-Thurston, 2004) 
There is a constant C > 1 and a sequence of unknotted, smooth 
curves γn embedded in R3, each having length L  = 1, such that the 
area of any embedded disk spanning γn is greater than n.

Theorem 1 holds for the curves below if they are normalized to have 
length one.  Any disk spanning these curves crosses the cylinder below 
exponentially often.  

 Question. 
Can we control the  area of a 
spanning disk by adding 
some additional geometric 
condition?



Normal and minimal surfaces

What bounds can we get on an embedded disk?

Theorem 2.  
For any embedded closed unknotted smooth curve γ in R3 

 having length 
L and thickness r, there exists a smooth embedded disk of area A, having 
γ as boundary with 

where  C0 > 1 is a constant independent of γ, L and r.

A ≤ (C0)(L/r)2L2

A ≤ (C0)(1/r)2

For a curve with length one: 



Normal and minimal surfaces
Theorem 2.  
For any embedded closed unknotted smooth curve γ in R3 

 having length 
one and thickness r, there exists a smooth embedded disk of area A, 
having γ as boundary with

Proof.  Isotop γ within its (1/r) tubular neighborhood to a polygon K 
with n edges, where 

A ≤ (C0)(1/r)2

C2 = 2108t

t = 290n2 + 290n + 116

Then construct a spanning disk for γ that is a fundamental normal 
disk.  This requires at most C2 disks, where

Triangulate the complement of K in a ball B of radius 4. B contains 
less than t tetrahedra by an explicit construction, where

Each disk is a triangle in a ball of radius 2, and thus has area at most 8. 
Sum up the areas to get an upper bound. 

n ≤ 32(1/r)



Normal and minimal surfaces

What bounds can we get on an embedded disk?

Theorem 2.  
For any embedded closed unknotted smooth curve γ in R3 

 having length 
L and thickness r, there exists a smooth embedded disk of area A, having 
γ as boundary with 

where  C0 > 1 is a constant independent of γ, L and r.

A ≤ (C0)(L/r)2L2

This is a result in classical differential geometry that falls 
out of Haken’s Normal surface theory. 

Lesson:  
Area or length and curve or surface complexity are closely 
related. 

A ≤ (C0)(1/r)2For a curve with length one: 


