
The correspondence between normal surfaces and minimal surfaces  
has more applications. It can be used to investigate classical problems in 
Differential Geometry.

Classical Isoperimetric Inequality:   
A curve 𝜸 in R2 bounds a disk D with  4πA <  L2. 

Equality holds if and only if 𝜸 is a circle.

Normal and minimal surfaces

What about if we are given an unknotted curve 𝜸 in R3?    
Is there a disk with   A <  f (L)  for some function f ?



The correspondence between normal surfaces and minimal surfaces  
has many more applications. It can be used to investigate classical problems in 
Differential Geometry.
Classical Isoperimetric Inequality:   
A curve 𝜸 in R2 bounds a disk D with  4πA <  L2. 
Equality holds if and only if 𝜸 is a circle.

Normal and minimal surfaces

Suppose we are given an unknotted curve 𝜸 in R3?    
Is there a disk with   A <  f (L)  for some function f ? 

1. There is an immersed disk with 4πA <  L2.                                      
(Andre Weil, 1926)     

2. There is an embedded surface with 4πA <  L2.                                   
(W. Blaschke, 1930) 

What bounds can we get for an embedded disk?



Normal and minimal surfaces

What bounds can we get on an embedded disk?

Theorem 2.  For any embedded closed unknotted smooth curve γ in R3 
 

having length L and thickness r, there exists a smooth embedded disk of 
area A, having γ as boundary with 

where  C0 > 1 is a constant independent of γ, L and r.  

A ≤ (C0)(L/r)2L2

(The thickness of a curve r is the radius of its tubular neighborhood.)

Both results came out of complexity results.

Theorem 1.  (H-Lagarias-Thurston, 2004) 
There is a sequence of unknotted, smooth 
curves γn embedded in R3, each having length L  = 1, such that the 
area of any embedded disk spanning γn is greater than n.

For L=1 and thickness r,  A ≤ (C0)(1/r)2
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K1
K3

Theorem (H-Snoeyink-Thurston) 
There exists a sequence of unknotted polygons Kn with 11n edges such that 
any disk spanning the unknot Kn contains at least 2n triangular faces. 

Spanning Disks can be Exponentially Complicated
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Any disk with boundary Kn must have at least 2n triangles, 
since such a disk must cross the red line at least 2n times, 
and each triangle intersects a line at most once.

The Idea:

αn

α−n
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Proof:
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Three curves in the sequence of unknots  Kn 
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α = σ1σ−1
2

How to construct Kn 

To construct K, start with this braid on four strings

σ1 σ−1
2
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Kn is obtained by  
1. Iterating         n times
2. Iterating         n times
3. Capping off at the top and bottom
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α = σ1σ−1
2

Kn is obtained by  

α

α1. Iterating         n times
2. Iterating         n times
3. Capping off at the top and bottom

α−1
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Each Kn is the boundary of a standard embedded disk in R3.  
We will show that
1. This disk cannot be constructed with less than 2n flat triangles.
2. No other disk can do better. 

Spanning Disks for Kn

Standard disks with boundary Kn 



Braids and surface diffeomorphisms

Associated to a braid is a diffeomorphism of a punctured disk.

α = σ1σ−1
2
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How can we understand the long term behavior of the sequence

ϕ, ϕ2, …
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The level sets of a standard disk are stretched 
around the braid as we descend each level 
corresponding to an iterate of     ϕ

ϕ

We are interested in the iterates of the loop         
To keep track of these, we use the theory of train tracks.

α

α

ϕ(α)
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Each branch of a train track comes with weights.
Fixing weights that add up appropriately at branches
specifies a curve.
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Train tracks give a way to understand the images
of curves under iterated surface diffeomorphisms.
In our case we want to study the image of the blue loop
(a = 1, b = 0) and its iterates            . ϕn(α)
In particular we want to understand how the iterates  
            intersect B0.

α

α

ϕn(α)

ϕ(α)
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We want to understand how the iterates           intersect B0.ϕn(α)
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A train track carries a curve if some choice of
weights gives that curve.

This train track     carries 
the curve below with
weights a=1, b=1. The other
weights are determined.

Claim: This train track    is taken to itself by     .
It is invariant under     .  Any curve carried by 
is also carried by          . 

ϕ
ϕ τ

τ

τ

τ

τ

ϕ(τ)
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Each iteration of     more than doubles the number of times 
that the standard disk spanning the curve intersects B0.   

2a + 2b         6a + 8b   >   2 (2a + 2b)

Proof

τ

ϕ(τ)
ϕ
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Each iteration of 𝜑 more than doubles the number of times 
that a standard disk spanning the curve intersects B0.   

2a + 2b  —> 6a + 8b > 2 (2a + 2b) 

The number of times a standard disk intersects B0 more 
than doubles under each iteration of     .  B0 is a straight 
line when it intersects               in the level set at height n.

ϕ
ϕn(α)

If the standard disk is triangulated, it must have at least 
2n triangles, since each triangle intersects a line at most once.
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If the standard disk is triangulated, it must have at least 
2n triangles, since each triangle intersects a line at most once.
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What if we looked at some other disk spanning Kn, rather than 
the standard disk.  Could it intersect B0 in less points?

Look at the level sets of a Morse function for any disk spanning Kn.
Type 1 and 2 critical points don’t affect the number of intersections 
with B0.   Type 3 do change this number, perhaps drastically.  But 
only one type 3 can occur.  So the argument applies at the middle 
level, either working up from the bottom, or down from the top.



�24

Any disk with boundary Kn must have at least 2n triangles, 
since such a disk must cross the red line at least 2n times, 
and each triangle intersects a line at most once.

Conclude:



Normal and minimal surfaces

What bounds can we get on an embedded disk?

Theorem 1.  (H-Lagarias-Thurston, 2004) 
There is a sequence of unknotted, smooth curves γn embedded in R3, 
each having length L  = 1, such that the area of any embedded disk 
spanning γn is greater than n.

Theorem 1 holds for the curves below if they are normalized to have 
length one.  Any disk spanning these curves crosses the cylinder below 
exponentially often.  

 Question. 
Can we control the  area of a 
spanning disk by adding 
some additional geometric 
condition?



Normal and minimal surfaces

What bounds can we get on an embedded disk?

Theorem 2.  
For any embedded closed unknotted smooth curve γ in R3 

 having length 
L and thickness r, there exists a smooth embedded disk of area A, having 
γ as boundary with 

where  C0 > 1 is a constant independent of γ, L and r.

A ≤ (C0)(L/r)2L2

A ≤ (C0)(1/r)2

For a curve with length one: 



Normal and minimal surfaces
Theorem 2.  
For any embedded closed unknotted smooth curve γ in R3 

 having length 
one and thickness r, there exists a smooth embedded disk of area A, 
having γ as boundary with

Proof.  Isotop γ within its (1/r) tubular neighborhood to a polygon K 
with n edges, where 

A ≤ (C0)(1/r)2

C2 = 2108t

t = 290n2 + 290n + 116

Then construct a spanning disk for γ that is a fundamental normal 
disk.  This requires at most C2 disks, where

Triangulate the complement of K in a ball B of radius 4. B contains 
less than t tetrahedra by an explicit construction, where

Each disk is a triangle in a ball of radius 2, and thus has area at most 8. 
Sum up the areas to get an upper bound. 

n ≤ 32(1/r)



Knot and Link Diagrams

The study of knot diagrams - planar curves with choices of over 
and under-crossings is an interesting subject of its own. 



Knot	diagrams	

• Traditionally - diagrams are used to study knots and links. 
• Diagrams are interesting in their own right. 
• We can reverse the usual approach - use knots and links to study diagrams. 
• The space of diagrams has more structure than the space of knots.

Diagrams

Diagrams give the standard way to represent knots.

Traditionally - diagrams are used to study knots and links.
Diagrams are interesting in their own right.
We can reverse this - use knots and links to study diagrams.
The space of diagrams contains more structure than the space of knots.

Joel Hass Knots and Knot Diagrams Nov. 24, 2014 3 / 1



Lower Bounds for Reidemeister Moves

Suppose that any n crossing unknot diagram Dn can be transformed to the

trivial diagram with U(n) Reidemeister crossings.  


What do we know about U(n)?

No job is too small



Bounds for U(n)

Theorem H-Lagarias (2001): U(n) ≤  (210)n

Idea: Compute an upper bound for the number of triangles in a Fundamental Normal Surface 
Surface.  The Fundamental surfaces include an unknotting disk if K is the unknot.

Slide the knot across one triangle of this disk at a time.

This method cannot improve the bound from exponential to polynomial.

Reidemeister Moves
Theorem (Reidemeister, Alexander-Briggs, 1926)
Two diagrams representing the same knot are connected by a sequence of
these three Reidemeister moves.

Key Question: How many?

Joel Hass Knots and Knot Diagrams Nov. 24, 2014 5 / 1

Proof: Each elementary move gives finitely many Reidemeister moves.

Each move across a triangle can result in        Reidemeister moves and there can be 
put such          triangles to slide across.  The resulting number of Reidemeister moves 
is bound by

(C1)t

(C2)t

(C1)t(C2)t = (C3)t



Bounds for U(n)

Theorem H-Nowik (2010)

Theorem Lackenby (2013)

Open Problem:  Close the gap.  
For example, find candidate examples requiring more than 
quadratic numbers of Reidemeister moves, to show that  

U(n) ≥
n2

25

U(n) ≤ (231n)11

U(n) ≥ Cn3



Use EXAMPLES  and  INVARIANTS 

1. Find a family of unknot diagrams Dn that seem to require a lot of 
Reidemeister moves to simplify. 

2. Show that they really do require a lot of moves by constructing 
and computing Diagram invariants.

To Establish LOWER Bounds:



2n-1			(positive)

2n			(negative)

n

	 	

The Examples Giving the Best Known Lower Bounds

Previous lower bounds were linear.

































	



This particular sequence changed Dn to the trivial Diagram with 2n2 + 3n 
moves. How do we know that no better, linear sequence of moves exists?

We’ll show that we can improve by at most 2 moves.



An	Invariant	of	Knot	Diagrams		

We define and use an invariant of knot diagrams to prove lower bounds, 

Ilk : Diagrams → Z 

with the following properties: 

1. Ilk(O) = 0 

2. Ilk(D) changes by at most 1 under a Reidemeister move.  

3. There are n-crossing diagrams Dn of the unknot with                           
Ilk(Dn) >  n2/25   for all n.



Theorem.  The unknot diagram Dn shown below has 7n − 1 crossings 
and requires no less than f(n) Reidemeister moves to transform to the 
trivial diagram, where f(n) satisfies 

2n2 + 3n − 2   ≤   f(n)   ≤  2n2 + 3n

Quadratic Lower Bounds

2n-1			

2n			

n



Ilk  is a finite type invariant for knot diagrams. 

Finite Type Invariants for knots were introduced by Vassiliev and Gusarov (1990). 

Let V be any invariant of oriented knots with values in R.  
Extend V to an invariant of singular knots with a single double point by 

Extend V to singular knots with m double points by repeating. 

Definition. V has finite type m if its extension to m+1 singular knots is identically 
zero. 

This idea can be used to study general configuration spaces - not just knots. 

We use it on the space of diagrams.

What is the invariant Ilk ?



Our diagram invariant is based on the linking number. This is obtained from 
adding the signs of all crossings between two components of a link. 

What is the invariant Ilk ?



What is the invariant Ilk ?

Defining Ilk 
We use a link invariant to define a diagram invariant. 

Definition: Let D be a knot diagram. For each crossing c we can smooth the 
crossing to get a two component link with components Ac and Bc .

This does not give a knot invariant.  
It gives a number that changes under a Reidemeister move.

Ilk (D)  = 



Computing Ilk  

Ilk   = 



How does Ilk change under a Reidemeister move taking D to D0 ?  

Lemma: | Ilk(D0 ) − Ilk(D)| ≤ 1. 
Proof: Check the change in Q for each Reidemeister move.

How Ilk changes

Ilk(D) = Ilk(D’) + (|lk(A, B)| + 1) = Ilk(D’) + 1

Ilk(D) changes by 1.



How does Ilk change under a Reidemeister II move taking D to D’ ?

How Ilk changes

Ilk(D) = Ilk(D’) + (|lk(A, B)| + 1) − (|lk(A’, B’)| + 1) = Ilk(D’). 

Ilk(D) doesn’t change.



How does Ilk change under a Reidemeister II move taking D to D’ ?

How Ilk changes

Ilk(D) = Ilk(D’) + (|lk(A, B)| + 1) − (|lk(A’, B’)| + 1) = Ilk(D’). 

Ilk(D) doesn’t change.

Ilk(D) = Ilk(D’) − (|lk(A, B)| + 1) + (|lk(A’, B’)| + 1) = Ilk(D’) ± 1

Ilk(D) changes by ± 1.



2n-1			(positive)

2n			(negative)

n

Example	of	computation	Ilk		at	one	crossing:



2n-1			(positive)

2n			(negative)

n

Example	of	computation	Ilk		at	one	crossing:



2n-1			(positive)

2n			(negative)

n

Example	of	computation	Ilk		at	one	crossing:



2n-1			(positive)

2n			(negative)

n

Example	of	computation	Ilk		at	one	crossing:



Example	of	computation	Ilk		at	one	crossing:

The	crossing	was	positive	and	the	linking	number	is	-n	so	
this	crossing	contributes	(+1)(1+|-n|)	=	1+n.

2n			(negative)

2n-1			(positive)

n



Sum all contributions from all crossings: 

Ilk(Dn) = 2n2 + 3n − 2

2n-1			

2n			

n

Since any Reidemeister move changes the  value of Ilk(Dn) 
by at most 1, and Dn has 7n-1 crossings, we get a quadratic 
lower bound on the number of required moves.



A	similar	lower	bound	is	obtained	for	any	knot	type	
by	connected	sum	with	a	fixed	diagram:

A	better	than	quadratic	lower	bound	cannot	be	established	using	
the	invariant		Ilk.		

Open	Problem:	Is	there	a	knot	diagram	for	the	unknot	that	requires	O(n3)	
Reidemeister	moves	to	transform	to	a	trivial	diagram?					



Computation and complexity have many still 
undiscovered connections to Topology

There are many intriguing possibilities for applying  
ideas from approximation algorithms, probabilistic 
algorithms, quantum computing etc to questions in 
topology and geometry.



Zero Knowledge Proofs

Example 
There is a zero knowledge proof that this knot is non-trivial.

The technique applies to a wide variety of knots.  
The ideas are due to  
Goldwasser, Micali, Rackoff  (1985) 
Goldreich, Micali, Wigderson (1991)







There are six different 3-colorings of K, using six permutations of RGB. 
I create six copies, using all six. 

RBG

GRB

RGB

GBR

BRG BGR



Zero Knowledge Proofs

Example 
There is a zero knowledge proof that this knot is non-trivial.
We will play a game that will convince you I know how to strongly 3-
color this knot. 

At each step,  
1. I randomly select one of my six colorings and put it on the table in 

front of you with masking tape hiding the colors. You see the above, 
with no colors. 

2. You select a crossing. 
3. I peel the tape from the three strands of the knot meeting that 

crossing. 
4. We repeat this procedure.



What you see



What did you learn? 

Nothing!



Hidden 2

Hidden 4

Hidden 6

Hidden 1

Hidden 3

Hidden 5

Sequence of moves: 
1. I roll a die and randomly select 

one of the six color 
permutations. (You don’t know 
which one.) I cover it up and put 
it in front of you uncolored. 

2. You select a crossing. 
3. I uncover the crossing and the 

color of adjacent edges.

You see this. There are three 
colors near the vertex. 

The six 3-colorings of K using 6 
permutations of RGB 





Zero Knowledge Proofs

There is a zero knowledge proof that this knot is non-trivial.

1. I will convince you that this knot is non-trivial. 
2. You learn nothing about the proof.  You will not be able to 

prove to someone else that the knot is non-trivial, even 
though you knot that it is with probability p that 
approaches 1 exponentially fast as we repeat the game.



What did you learn? 

Nothing!

I hope that everyone learned something this week.  

Thank you for listening. 


