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Some Good Reasons Why Spheres Are Rigid

As convex surfaces.

Theorem (Cohn-Vossen (C*) 1936 ; Herglotz (C3) 1943 ;
Sacksteder (C?) 1962 ; Pogorelov ( - ), 1973)

Any two isometric compact closed convex surfaces in E® are
congruent.

A counter-example:

Do Carmo

The sphere has no flex: any infinitesimal isometric deformation
has positive curvature, hence is a round sphere.
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Theorem (Nash 1954, Kuiper 1955)

The round sphere has a C' isometric embedding inside an
arbitrarily small ball!!

Connelly 1993 (Handbook of convex geometry)

“I know of no explicit construction of such a flex or even of an
explicit C! embedding other than the original sphere.”
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Introduction

The question of whether or not in general a Riemannian manifold can be
isometrically imbedded in Euclidean space has been open for some time. The
local problem was discussed by Schlaefli [1] in 1873 and treated by Janet [2] and
Cartan [3] in 1926 and 1927.

This question comes up in connection with the alternative extrinsic and in-
trinsie approaches to differential geometry. The historically older extrinsic atti-
tude sees a manifold as imbedded in Euclidean space and its metric as derived
from the metric of the surrounding space. The metric is considered to be given
abstractly from the intrinsic viewpoint.

This intrinsic approach has seemed the more general, so long as there was no
contravening evidence. Now it develops that the two attitudes are equally
general, and any (positive) metric on a manifold can be realized by an appropriate
imbedding in Euclidean space.
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Nash’s Method in a Nutshell

@ Let hs.t. g— h*(-, )« is a metric, i.e. his short.
@ Choose a locally finite cover of Sym’ by simplices.

9(p) — (-, )k (p) = Z 0o (P) Y ai(p)gi =Y aij(p);
i

i€o



Nash’s Method in a Nutshell

g(p) — h* (-, Yux(P) = X, ; @i j(P) 5,
@ Step /,j: Replace h by

\/4ajj .
hi,j =h+ N.Ijj (COS(N,'J[,"/')U + SIn(N,',jf,'J)V)

Y. WAYAWAWAN
VAL VAV

hif (s )ex — B e = aij(R)EE + O(1/Niy)




Nash’s Method in a Nutshell

g(p) — h* (-, Yux(P) = X, ; @i j(P) 5,
@ Step /,j: Replace h by

\/4ajj .
hi,j =h+ N.Ijj (COS(N,'J[,"/')U + SIn(N,',jf,'J)V)

Y. WAYAWAWAN
VAL VAV

hif (s )ex — B e = aij(R)EE + O(1/Niy)

@ Stage = all steps /,j ~ hy.




Nash’s Method in a Nutshell

g(p) — h* (-, Yux(P) = X, ; @i j(P) 5,
@ Step /,j: Replace h by

\/4ajj .
hi,j =h+ N.Ijj (COS(N,'J[,"/')U + SIn(N,',jf,'J)V)

Y. WAYAWAWAN
VAL VAV

hif (s )ex — B e = aij(R)EE + O(1/Niy)

@ Stage = all steps /,j ~ hy.

Repeating the stages we get hy, hy, .... Choosing the N;; large
enough hy g, hss With h., a C' isometric embedding.



Nash’s Method Revised by Kuiper
g(p) — (-, )ue(P) = X @i j(P)EE;

@ Step /,/: In a suitable chart, replace h by

ajj .
=" Sin(2Ni i j))w

f o Vaij
By = b= sin@n, ;) 2 Y3 g >

4N,/ 8x N,"j

\/h/\/\/\
\VARVAR

By (- er — B g = aij(p)eZ; + small terms

@ Stage = all steps /,j ~ hy.

Repeating the stages we get hy, ho, ... Choosing the N;; large
enough hy g, hs With hy, a C' isometric embedding.



Can you guess the shape of h,.?
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f:(S,g) — E3is an isometry if
of of of of of of
—E F, (<L 2
’ <3y, 8y>]E3

’ <87’ @>]E3 -
Ae of - of .
S Tp=06y) = (p.1p). 51 (P). 5, (p)) satisfies

(9% ox'es =

R(j'f) = (0,0,0), where
R(,D, f> u, V) = (<Ua U>E3 - E(p)v <Ua V>E3 - F(p) <V7 V>]E3 - G(p))
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Idea: Decouple the derivatives from the map to solve

R(p, f(p), u(p), v(p)) =0

with p € S, f(p) € B3, u(p) € Typ)E3, v(p) € TypES.

A solution to R = 0 is said formal. A solution of the form j'f is a
true (or holonomic) solution.

R = 0, or more generally a differential relation, satisfies the
h-principle if every formal solution is homotopic (through formal
solutions) to a true solution.
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1-dimensional Convex Integration

Lemma (Gromov, 1973)

Let fy : | — R3. For all x € I, suppose Ry C R3 is open and
fo(x) € IntConv(Ry).

Then, Ve > 0, there exists a true solution f of R = UyRy S.1.

If —follco <€




1-dimensional Convex Integration

Step 1
Build a continuous family of loops

vy IxS' - R
(x,8) = u(s)

such that
Vx e |, 6(x):/ Ix
S1

Tx

fo(X)




1-dimensional Convex Integration

Step 2
Put

1) = 6(0) + | " e({Ns})ds

where N € N* et {Ns} is the fractional part of Ns.
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1-dimensional Convex Integration

Step 2
Put

1) 5= 6(0) + | " e({Ns})ds

where N € N* et {Ns} is the fractional part of Ns.

C w({Nx})

’yx({NX}) € Rx and

Nx]| v

F(x) ~ Z / S({Ns})ds ~ £,(0) +Z / )= ()



The h-Principle for Ample Relations

Theorem (Gromov, 1973)

Let R  J'(M, N) be an open and ample differential relation.
Then the inclusion of true solutions into the space of formal
solutions is a weak homotopy equivalence.

ample non-ample

The relation of immersions

The differential relation of immersions from M™ to N satisfies
the h-principle for n > m. In particular, S? can be everted in R3.
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Back to Isometries

@ Find fy s.t. fj € IntConv(Rs), i.€. fy is short.
@ Use a single coordinate chart.




Back to Isometries

@ Extend 1D-Cl to 2D.

(1@ 1

313

lo®0o

g- 1, Zp,e ®

gi = i—1 <'7 '>]E3 + P/EI ® L



Back to Isometries

@ Extend 1D-Cl to 2D.

p TN

’Ys(NS) _ f(S)eiaS cos(2mNs)



Back to Isometries

@ Extend 1D-Cl to 2D.

e




Back to Isometries

@ Extend 1D-Cl to 2D.

i

Corrugations
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Back to Isometries
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@ Deal with boundary conditions.
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Back to Isometries

@ Deal with boundary conditions.

9

g2
91:1 er ‘

Bk

Do.3
Di 1
Di2
Di3

Compute embeddings f;; so that f,.’jj<, YEs ~ i)

— Ssequence fo, f171 , M 25 fi 35 f271 e
C' converging to an isometry.









ﬁﬁff










@ The C' Fractal Structure



The C' Fractal Structure

The IC process applied on a circle of radius < 1.



The C' Fractal Structure

The IC process applied on a circle of radius < 1.




The C' Fractal Structure

The IC process applied on a circle of radius < 1.




The C' Fractal Structure

The IC process applied on a circle of radius < 1.



The C' Fractal Structure

The IC process applied on a circle of radius < 1.

vxeS', ne(x)= <H glak(x) 0032”ka> no(x) = ”=Mny(x)
k1

where ng is L to fy and A (Xx) = > ko1 ak(x) cos 2w N x.

dimy graph(>_32., @ cos(2nb*x)) < In(a)/In(b) + 2



The C' Fractal Structure

The IC process applied on a circle of radius < 1.

vxeS', ne(x)= <H glak(x) 0032”’\’”) no(x) = ”=Mny(x)
k1

where ng is L to fy and A (X) = > %1 ak(x) cos 2w Ny x.

() - (ILer) ()

cosf, sinb

where Cx = (_ sinfy cos b

) and 0, (x) = ax(x) cos 2m Ny x




The C' Fractal Structure

Let
(Vi1 Vijrt Mije1)' = Chjvt - (Vi Vi M)’ Crjr € SO(3)

Nk,

The corrugation matrix is:

0o 3 3
Rk.i)= ] (Hcg,,) [1¢x,

l=k+1 \j=1 j=i



The C' Fractal Structure

The corrugation matrix: R(k, i) = H HC&/ Hck,,
l=k+1 j=1

Theorem (C' fractal expansion)

The Gauss map ny, of f, := . ”T fx 3 over D ; \ Dk j_1, where
—1+00

k>1andiec {1,2,3}, is given by

=(0 0 1) Ak, 1) (v,

Dk \ Dx,i-1
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The HEVEA Project

Vincent Roland Tanessi
Borrelli Denis Quintanar
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Damien Mélanie Boris

Rohmer Theilliére Thibert



http://hevea-project.fr

Home en fr Teammembers  Theflattorus  The reduced sphere  Ongoing

Hévéa Project :

h-principle, visualization and applications

Partial view of an isometric embedding of the flat torus

ecoc

\

The flat torus The reduced sphere Ongoing

Website designed by Mélanie Theilliére
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