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Some Good Reasons Why Spheres Are Rigid

As convex surfaces.

Theorem (Cohn-Vossen (Cω) 1936 ; Herglotz (C3) 1943 ;
Sacksteder (C2) 1962 ; Pogorelov ( - ), 1973)

Any two isometric compact closed convex surfaces in E3 are
congruent.

Isometric map:

Corollary
The sphere has no flex: any infinitesimal isometric deformation
has positive curvature, hence is a round sphere.
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A Paradox

Theorem (Nash 1954, Kuiper 1955)

The round sphere has a C1 isometric embedding inside an
arbitrarily small ball!!

Connelly 1993 (Handbook of convex geometry)
“I know of no explicit construction of such a flex or even of an
explicit C1 embedding other than the original sphere.”
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From Riemann to Nash

Riemann 1854
(On The Hypotheses Which Lie At The Bases Of Geometry)
“. . . and consequently ds is the square root of an always
positive integral homogeneous function of the second order of
the quantities dx . . . ”

γ(t)

γ′(t)

`(γ) =

∫
I

√
g(γ′(s), γ′(s))ds

=

∫
I

√
〈γ′(s), γ′(s)〉E3ds
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From Riemann to Nash

The isometric embedding problem

Find f : (Mn,g)→ Es s.t. ∀p ∈ M,∀u, v ∈ TpM:
g(u, v) = 〈df .u,df .v〉Es , i.e. g = f ∗〈·, ·〉Es

1873 Schlaefli: conjecture ∃ local C∞ isometric embedding in
Es with s = n(n + 1)/2. Note that s(2) = 3.

1926-27 Janet-Cartan: C∞ → Cω.
1936 Whitney: ∃ global C∞ embedding in R2n. (no geometry)
1954 Nash: ∃ global C1 isometric embedding in Ek≥n+2 as soon

as there is an embedding in Ek .
1955 Kuiper: n + 2→ n + 1.
1956 Nash: ∃ global C∞ isometric embedding in E3s+4n.
1973 Gromov h-principle and convex integration theory.

. . .
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John F. Nash Nicolaas Kuiper

Nash-Kuiper theorem, 1954-55

If h : (Mn,g)→ Ek with k > n is a short embedding
(h∗〈·, ·〉Ek < g), then ∀ε > 0 there exists a C1 isometric
f : (Mn,g)→ Ek s.t.

‖f − h‖C0 < ε
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Nash’s Method in a Nutshell

Let h s.t. g − h∗〈·, ·〉Ek is a metric, i.e. h is short.

Choose a locally finite cover of Sym+
n by simplices.

g − h∗〈·, ·〉E3

gi = `2i,1 + `2i,2 + `2i,3

g(p)− h∗〈·, ·〉Ek (p) =
∑
σ

ϕσ(p)
∑
i∈σ

αi(p)gi =
∑
i,j

ai,j(p)`2i,j
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Nash’s Method in a Nutshell

g(p)− h∗〈·, ·〉Ek (p) =
∑

i,j ai,j(p)`2i,j

Step i , j : Replace h by

hi,j = h +

√ai,j

Ni,j

(
cos(Ni,j`i,j)u + sin(Ni,j`i,j)v

)

u

v

hi,j
∗〈·, ·〉Ek − h∗〈·, ·〉Ek = ai,j(p)`2i,j + O(1/Ni,j)

Stage = all steps i , j  h1.

Repeating the stages we get h1,h2, . . . . Choosing the Ni,j large

enough hk
C1
→ h∞ with h∞ a C1 isometric embedding.
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Nash’s Method Revised by Kuiper

g(p)− h∗〈·, ·〉Ek (p) =
∑

i,j ai,j(p)`2i,j

Step i , j : In a suitable chart, replace h by

hi,j = h−
ai,j

4Ni,j
sin(2Ni,j`i,j)

∂f
∂x

+

√
ai,j

Ni,j
sin(Ni,j`i,j−

ai,j

4
sin(2Ni,j`i,j))w

w

hi,j
∗〈·, ·〉Ek − h∗〈·, ·〉Ek = ai,j(p)`2i,j + small terms

Stage = all steps i , j  h1.

Repeating the stages we get h1,h2, . . . . Choosing the Ni,j large

enough hk
C1
→ h∞ with h∞ a C1 isometric embedding.



Can you guess the shape of h∞?
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From PDEs to Differential Relations

Misha Gromov

f : (S,g)→ E3 is an isometry if

〈 ∂f
∂x
,
∂f
∂x
〉
E3

= E , 〈 ∂f
∂x
,
∂f
∂y
〉
E3

= F , 〈 ∂f
∂y
,
∂f
∂y
〉
E3

= G

⇔ j1f : p = (x , y) 7→ (p, f (p),
∂f
∂x

(p),
∂f
∂y

(p)) satisfies

R(j1f ) = (0,0,0), where

R(p, f ,u, v) = (〈u,u〉E3 − E(p), 〈u, v〉E3 − F (p), 〈v , v〉E3 −G(p))
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From PDEs to Differential Relations

Idea: Decouple the derivatives from the map to solve

R(p, f (p),u(p), v(p)) = 0

with p ∈ S, f (p) ∈ E3,u(p) ∈ Tf (p)E3, v(p) ∈ Tf (p)E3.

A solution to R = 0 is said formal. A solution of the form j1f is a
true (or holonomic) solution.

R = 0, or more generally a differential relation, satisfies the
h-principle if every formal solution is homotopic (through formal
solutions) to a true solution.
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The h-Principle

R = 0, or more generally a differential relation, satisfies the
h-principle if every formal solution is homotopic (through formal
solutions) to a true solution.

Existence of formal solutions are of a topological nature.

A (counter-)example: There is no immersion S2 → R2.

I := {(p, f ,L) | p ∈ S2, f ∈ R2,L ∈ L(TpS2,TfR2) : rank L = 2}
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1-dimensional Convex Integration

Convex integration is a tool invented by Gromov to prove the
h-principle for many differential relations.

R

p

A simple observation
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1-dimensional Convex Integration

Lemma (Gromov, 1973)

Let f0 : I → R3. For all x ∈ I, suppose Rx ⊂ R3 is open and

f ′0(x) ∈ IntConv(Rx).

Then, ∀ε > 0, there exists a true solution f of R = ∪xRx s.t.

‖f − f0‖C0 < ε

R

f ′0

I



1-dimensional Convex Integration

Step 1
Build a continuous family of loops

γ : I × S1 → R
(x , s) 7→ γx(s)

such that
∀x ∈ I, f ′0(x) =

∫
S1
γx

x

γx

f ′0(x)

R



1-dimensional Convex Integration

Step 2
Put

f (x) := f0(0) +
∫ x

0
γs({Ns})ds

where N ∈ N∗ et {Ns} is the fractional part of Ns.

x

γx({Nx})
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i=0

∫ i+1
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bNxc∑
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1
N

f ′0(
i
N
) ≈ f0(x)
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The h-Principle for Ample Relations

Theorem (Gromov, 1973)

Let R ⊂ J1(M,N) be an open and ample differential relation.
Then the inclusion of true solutions into the space of formal
solutions is a weak homotopy equivalence.

ample non-ample

The relation of immersions
The differential relation of immersions from Mm to Nn satisfies
the h-principle for n > m. In particular, S2 can be everted in R3.
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Back to Isometries

The relation Riso := {R = (0,0,0)} of isometries S2 → E3 is
neither open nor ample and S2 is 2-dimensional.

R(p,q,u, v) = (〈u,u〉E3 −E(p), 〈u, v〉E3 − F (p), 〈v , v〉E3 −G(p))

1 Find f0 s.t. f ′0 ∈ IntConv(Riso), i.e. f0 is short.

2 Thicken Riso to get an open relation.

3 Use a single coordinate chart.

4 Deal with boundary conditions.

5 Extend 1D-CI to 2D.
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Back to Isometries

Find f0 s.t. f ′0 ∈ IntConv(Riso), i.e. f0 is short.
Use a single coordinate chart.



Back to Isometries

Extend 1D-CI to 2D.

g − f ∗0 〈·, ·〉E3
=

3∑
i=1

ρi`i ⊗ `i

gi = f ∗i−1〈·, ·〉E3
+ ρi`i ⊗ `i

Corrugations



Back to Isometries

Extend 1D-CI to 2D.

γs(Ns) = r(s)eiαs cos(2πNs)

f (x) := f0(0) +
∫ x

0
γs({Ns})ds

Corrugations
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Extend 1D-CI to 2D.

Corrugations



Back to Isometries

Thicken Riso to get an open relation.

Riso

f ′0
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Back to Isometries

Thicken Riso to get an open relation.

R1

f ′1

Riso



Back to Isometries

Thicken Riso to get an open relation.

f ′1
R1

R∞ = Riso



Back to Isometries

Thicken Riso to get an open relation.

R2

R∞ = Riso

f ′2



Back to Isometries

Thicken Riso to get an open relation.

R3

R∞ = Riso

f ′3



Back to Isometries

Deal with boundary conditions.

D

g

g2

g1
g1,1

g1,2
g1,3

D0,3

D1,1
D1,2

D1,3

f ∗0 〈, 〉E3

Compute embeddings fi,j so that f ∗i,j〈, 〉E3 ≈ gi,j .

=⇒ sequence f0, f1,1, f1,2, f1,3, f2,1, . . .
C1 converging to an isometry.



Back to Isometries

Deal with boundary conditions.

D
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f ∗0 〈, 〉E3

Compute embeddings fi,j so that f ∗i,j〈, 〉E3 ≈ gi,j .

=⇒ sequence f0, f1,1, f1,2, f1,3, f2,1, . . .
C1 converging to an isometry.
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The C1 Fractal Structure

The IC process applied on a circle of radius < 1 .

∀x ∈ S1, n∞(x) =

( ∞∏
k=1

eiαk (x) cos 2πNk x

)
n0(x) = eiA∞(x)n0(x)

where n0 is ⊥ to f0 and A∞(x) =
∑∞

k=1 αk (x) cos 2πNkx .
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The C1 Fractal Structure

The IC process applied on a circle of radius < 1 .

∀x ∈ S1, n∞(x) =

( ∞∏
k=1

eiαk (x) cos 2πNk x

)
n0(x) = eiA∞(x)n0(x)

where n0 is ⊥ to f0 and A∞(x) =
∑∞

k=1 αk (x) cos 2πNkx .

dimH graph(
∑∞

k=0 ak cos(2πbkx)) ≤ ln(a)/ ln(b) + 2



The C1 Fractal Structure

The IC process applied on a circle of radius < 1 .

∀x ∈ S1, n∞(x) =

( ∞∏
k=1

eiαk (x) cos 2πNk x

)
n0(x) = eiA∞(x)n0(x)

where n0 is ⊥ to f0 and A∞(x) =
∑∞

k=1 αk (x) cos 2πNkx .

(
t∞
n∞

)
=

( ∞∏
k=0

Ck

)(
t0
n0

)

where Ck =

(
cos θk sin θk
− sin θk cos θk

)
and θk (x) = αk (x) cos 2πNkx



The C1 Fractal Structure

Let
(v⊥k ,j+1 vk ,j+1 nk ,j+1)

t = Ck ,j+1 · (v⊥k ,j vk ,j nk ,j)
t , Ck ,j+1 ∈ SO(3)

The corrugation matrix is:

R(k , i) =
∞∏

`=k+1

 3∏
j=1

C`,j

 3∏
j=i

Ck ,j



The C1 Fractal Structure

The corrugation matrix: R(k , i) =
∞∏

`=k+1

(
3∏

j=1

C`,j)
3∏

j=i

Ck ,j .

Theorem (C1 fractal expansion)

The Gauss map n∞ of f∞ := lim
k→+∞

fk ,3 over Dk ,i \ Dk ,i−1, where

k ≥ 1 and i ∈ {1,2,3}, is given by

nt
∞ = (0 0 1) · R(k , i) · (v⊥0,i v0,i n0)

t

Dk ,i \ Dk ,i−1



















The HEVEA Project

Vincent
Borrelli

Roland
Denis

Tanessi
Quintanar

Damien
Rohmer
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