Hard Problems in 3-Manifold Topology School on Low-Dimensional Geometry and Topology: Discrete and Algorithmic Aspects

Arnaud de Mesmay¹ Yo'av Rieck²

Martin Tancer⁴

Eric Sedgwick ³

¹CNRS, GIPSA-Lab

²University of Arkansas ⁴Charles University

³DePaul University

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

A B K A B K

San 1 / 40

Some NP-Hard Problems in 3-Manifold Topology

Jones Polynomial (#P-hard) - Jaeger, Vertigan, Welsh - 1990

Witten, Reshetikhin, Turaev Invariant $\tau_4~(\#{\rm P}\text{-hard})$ - Kirby, Melvin - 2004

3-Manifold Knot Genus - Agol, Hass, Thurston - 2006

TAUT ANGLE STRUCTURE - Burton, Spreer - 2013

Turaev-Viro invariants (#P-hard) - Burton, Maria, Spreer - 2015

IMMERSIBILITY - Burton, Colin de Verdière, de Mesmay - 2016

SUBLINK, UPPER BOUND FOR THE THURSTON COMPLEXITY OF AN

UNORIENTED CLASSICAL LINK - Lackenby - 2016

HEEGAARD GENUS - Bachman, Derby-Talbot, Sedgwick - 2016

NON ORIENTABLE SURFACE EMBEDDABILITY - Burton, de Mesmay, Wagner - 2017

EMBED_{2 \rightarrow 3}, EMBED_{3 \rightarrow 3}, 3-MANIFOLD EMBEDS IN S³ - de Mesmay, Rieck, Sedgwick, Tancer - 2017

TRIVIAL SUB-LINK, UNLINKING NUMBER, REIDEMEISTER DISTANCE/DEFECT, 4-BALL EULER CHAR 0 - de Mesmay, Rieck, Sedgwick, Tancer - 2018

 < □ > < □ > < □ > < ≡ > < ≡ > ≡
 Ξ

 IHP Paris - June 2018

ッペペ 2 / 40

Embeddings in \mathbb{R}^d

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

クへで 3 / 40

$EMBED_{k \to d}$

Problem: $\text{EMBED}_{k \to d}$ Given a k-dimensional simplicial complex, does it admit a piecewise linear embedding in \mathbb{R}^d ?

 $E_{MBED_{1\rightarrow 2}}$ is Graph Planarity

EMBED_{2 \rightarrow 3}: does this 2-complex embed in \mathbb{R}^3 ?

3-Manifold Topology

Does it embed?

3-Manifold Topology

Does it embed?

Eric Sedgwick (DePaul University) 3-Manifold Topology

IHP Paris - June 2018

(日) (四) (王) (王) (王)

990 6 / 40

1

Does it embed?

Yes, but must change the embedding of yellow/green torus from the previous picture.

 ビート・イラト・イミト・ミート・シーマート

 Eric Sedgwick (DePaul University)

 3-Manifold Topology

 IHP Paris - June 2018

 6 / 40

$\text{EMBED}_{k \to d}$

d

Polynomially decidable - Hopcroft, Tarjan 1971

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

< 글 > < 글 >

1

200

$\text{EMBED}_{k \to d}$

2 3 4 5 6 7 8 9 10 11 12 13 14 1 always embeds 2 3 k 4 5 never embeds 6 7

d

Polynomially decidable - Hopcroft, Tarjan 1971 ; Čadek, Krčál, Matoušek, Sergeraert, Vokřínek, Wagner 2013-2017

IHP Paris - June 2018

3 . 3

$\text{EMBED}_{k \to d}$

2 3 4 5 6 7 8 9 10 11 12 13 14 1 always embeds 2 3 k 4 5 never embeds 6 7

d

 Polynomially decidable - Hopcroft, Tarjan 1971 ; Čadek, Krčál, Matoušek, Sergeraert, Vokřínek, Wagner 2013-2017

NP-hard - Matoušek, Tancer, Wagner '11

< ∃ >

San

$EMBED_{k \rightarrow d}$

2 3 4 5 6 7 8 9 10 11 12 13 14 1 always embeds 2 3 k 4 5 never embeds 6 7

d

Polynomially decidable - Hopcroft, Tarjan 1971; Čadek, Krčál, Matoušek, Sergeraert, Vokřínek, Wagner 2013-2017

- NP-hard Matoušek, Tancer, Wagner '11
 - Undecidable Matoušek, Tancer, Wagner '11

San

EMBED $_{k\to 3}$

d

Eric Sedgwick (DePaul University)

3-Manifold Topology

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨ - のへで IHP Paris - June 2018

$\text{EMBED}_{k \to 3}$

d

Theorem (Matoušek, S', Tancer, Wagner 2014) The following problems are decidable: $EMBED_{2\rightarrow3}$, $EMBED_{3\rightarrow3}$, and 3-MANIFOLD EMBEDS IN S^3 (OR \mathbb{R}^3).

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

$\text{EMBED}_{k \to 3}$

d

Theorem (de Mesmay, Rieck, S', Tancer 2017) The following problems are **NP-hard**: EMBED_{2 \rightarrow 3}, EMBED_{3 \rightarrow 3}, and 3-MANIFOLD EMBEDS IN S³ (OR \mathbb{R}^3).

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Knots and Links

Eric Sedgwick (DePaul University)

3-Manifold Topology

《口》 《圖》 《注》 《注》 IHP Paris - June 2018 200 10 / 40

1

A link diagram

Eric Sedgwick (DePaul University)

3-Manifold Topology

↓ □ → ↓ □ → ↓ ■ → ↓ ■ ↓
IHP Paris - June 2018

Reidemeister moves

Reidemeister (1927)

Any two diagrams of a link are related by a sequence of 3 moves (shown to the right).

Question: Reidemeister Distance

How many moves are needed?

Note:

May need to increase number of crossings.

Unlinking Number

Crossing Changes:

Any link diagram can be made into a diagram of an unlink (trivial) by changing some number of crossings.

Unlinking Number:

The minimum number of crossings *in some diagram* that need to be changed to produce an unlink.

Warning:

Minimum number may not be in the given diagram, so may need Reidemeister moves too.

A B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Unlinking Number

Crossing Changes:

Any link diagram can be made into a diagram of an unlink (trivial) by changing some number of crossings.

Unlinking Number:

The minimum number of crossings *in some diagram* that need to be changed to produce an unlink.

Warning:

Minimum number may not be in the given diagram, so may need Reidemeister moves too.

4 E F 4 E F

Given a link diagram, 3 Questions:

TRIVIALITY

Is it trivial? Can Reidemeister moves produce a diagram with no crossings?

TRIVIAL SUB-LINK Does it have a trivial sub-link? How many components?

UNLINKING NUMBER What is the unlinking number? How many crossing changes must be made to produce an unlink?

Hopf link

TRIVIALITY

Doesn't seem trivial, but how do you prove it?

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

I D > I A

< ∃ >

クへで 15 / 40

в

Linking number for two components:

• choose red and blue and orient them

- \blacksquare for crossings of red over blue
- linking number is the sum of +1's and -1's.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

nac

16 / 40

イロト イボト イラト イラト

Linking number

Reidemeister moves don't change the linking number! A crossing change changes the linking number by ± 1

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Hopf Link

TRIVIALITY

Not trivial. Linking number is not zero.

TRIVIAL SUB-LINK Maximal trivial sub-link has one component.

UNLINKING NUMBER Unlinking number 1.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018 18 / 40

< ∃ ≥

Э

Sar

Borromean Rings

TRIVIALITY

Not trivial. (But harder to prove, linking numbers are 0.)

TRIVIAL SUB-LINK Maximal trivial sub-link has two components.

UNLINKING NUMBER Unlinking number 2. (Must show that it is greater than 1.)

San

Borromean Rings

TRIVIALITY

Not trivial. (But harder to prove, linking numbers are 0.)

TRIVIAL SUB-LINK Maximal trivial sub-link has two components.

UNLINKING NUMBER Unlinking number 2. (Must show that it is greater than 1.)

San

Whitehead Double of the Hopf Link

TRIVIALITY

Not trivial. (Requires proof, linking numbers are 0.)

TRIVIAL SUB-LINK Maximal trivial sub-link has **one** component.

UNLINKING NUMBER Unlinking number 1.

Whitehead Double of the Borromean Rings

TRIVIALITY

Not trivial. (Requires proof, linking numbers are 0.)

TRIVIAL SUB-LINK Maximal trivial sub-link has two components.

UNLINKING NUMBER Unlinking number 1.

San

Reidemeister Distance

Given two diagrams of the same link, let the *Reidemeister distance* be the number of Reidemeister moves required to get from one to the other.

Special Case: Reidemeister Defect Given a diagram of a unlink, how many moves are required to remove all crossings? Measure the *defect*, the number of extra moves required:

Reidemeister Distance

Given two diagrams of the same link, let the *Reidemeister distance* be the number of Reidemeister moves required to get from one to the other.

Special Case: Reidemeister Defect

Given a diagram of a unlink, how many moves are required to remove all crossings? Measure the *defect*, the number of extra moves required:

• $\# moves \ge 1/2 \ crossings$

Reidemeister Distance

Given two diagrams of the same link, let the *Reidemeister distance* be the number of Reidemeister moves required to get from one to the other.

Special Case: Reidemeister Defect

Given a diagram of a unlink, how many moves are required to remove all crossings? Measure the *defect*, the number of extra moves required:

 $\blacksquare \ \# \ moves \geq 1/2 \ crossings$

•
$$defect := \# moves - 1/2 crossings$$

Reidemeister Distance

Given two diagrams of the same link, let the *Reidemeister distance* be the number of Reidemeister moves required to get from one to the other.

Special Case: Reidemeister Defect

Given a diagram of a unlink, how many moves are required to remove all crossings? Measure the *defect*, the number of extra moves required:

- $\blacksquare \ \# \ moves \geq 1/2 \ crossings$
- $\bullet \ defect := \# \ moves 1/2 \ crossings$
- diagram to right: 7 moves, defect = 1.

Decision Problems for Link Diagrams

TRIVIALITY

Given a link diagram, does it represent a trivial link?

TRIVIAL SUB-LINK

Given a link diagram and a number n, does the link contain a trivial sub-link with n components?

UNLINKING NUMBER

Given a link diagram and a number n, can the link be made trivial by changing n crossings (in some diagram(s))?

REIDEMEISTER DEFECT (for unlink diagrams)

Given a diagram of an unlink and a number n, does the diagram have defect = n? I.e., can all crossings be removed with $\frac{1}{2}$ crossings + n Reidemeister moves?

Eric Sedgwick (DePaul University)

What is known?

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

୬ ୯.୧ 24 / 40

REIDEMEISTER DEFECT, TRIVIALITY & TRIVIAL SUB-LINK are in NP

Haken (1961); Hass, Lagarias, and Pippenger (1999)

Unknot recognition is decidable [H], and, in NP [HLP].

Lackenby (2014), (Dynnikov (2006)) For a diagram of an unlink, the number of moves required to eliminate all crossings is bounded polynomially in the number of crossings of the starting diagram.

Thus: REIDEMEISTER DEFECT, TRIVIALITY & TRIVIAL SUB-LINK are in NP.

Eric Sedgwick (DePaul University)

3-Manifold Topology

TRIVIAL SUB-LINK is NP-hard

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣へ⊙
TRIVIAL SUB-LINK is NP-hard

Problem: TRIVIAL SUB-LINK Given a link diagram and a number n, does the link contain a trivial sub-link with n components?

Lackenby (2017) (Non-trivial) SUB-LINK is NP-hard.

de Mesmay, Rieck, S' and Tancer (2017) TRIVIAL SUB-LINK is NP-hard

Proof is a reduction from 3-SAT: Given an (exact) 3-CNF formula Φ , there is a link L_{Φ} that has an n component trivial sub-link if and only if Φ is satisfiable. (n = number of variables)

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

《曰》 《圖》 《臣》 《臣》

୬ ୯.୧ 27 / 40

 \equiv

$$\Phi = (t \lor x \lor y) \land (\neg x \lor y \lor z)$$

Given an (exact) 3-CNF formula, need to describe a link.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Draw Hopf link for each variable, Borromean rings for each clause.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018 28 / 40

Band each variable to its corresponding variable in the clauses.

Eric Sedgwick (DePaul University)

3-Manifold Topology

Band each variable to its corresponding variable in the clauses.

Eric Sedgwick (DePaul University)

3-Manifold Topology

Each component is an unknot.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Φ satisfiable $\implies n$ component trival sub-link

Image: Constraint of the set of the s

Satisfiable: t = TRUE; x, y, z = FALSE.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Erase TRUE components: $t, \neg x, \neg y, \neg z$.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

The FALSE components form an n component trivial sub-link.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

$n \text{ component trival sub-link} \implies \Phi \text{ satisfiable}$

또 다 > (문 > (문 > (문 > (문 > (문 > (문 > (문 > (문 > (문 > (문 > (문 > (문 > (문 > (문 > (R >

Label the n trivial link components as FALSE, the others TRUE.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018 32 / 40

For each pair $(x, \neg x)$, one is TRUE the other FALSE.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Each clause has a TRUE. (Borromean rings not sub-link of trivial link.)

Eric Sedgwick (DePaul University)

3-Manifold Topology

Therefore, Φ is satisfiable.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

UNLINKING NUMBER is NP-hard

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣へ⊙

UNLINKING NUMBER is NP-hard

Related construction.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

UNLINKING NUMBER is NP-hard

But replace each component with its Whitehead Double!

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018 34 / 40

UNLINKING NUMBER is NP-hard $\Phi = (t \lor x \lor y) \land (\neg x \lor y \lor z)$

But replace each component with its Whitehead Double!

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018 34 / 40

UNLINKING NUMBER is NP-hard $\Phi = (t \lor x \lor y) \land (\neg x \lor y \lor z)$

Will show: Φ is satisfiable \iff unlinking number n

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

 Φ is satisfiable, unclasp TRUE components (*n* crossing changes).

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018 34

The TRUE components are an unlink, push to side.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

What remains is also an unlink! \implies unlinking number n.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018 34 / 40

Unlinking number $n \implies$

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Unlinking number $n \implies$ each variable gets a crossing change.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018 34 / 40

Crossing change affects either x or $\neg x$ (not both).

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Call the changed components TRUE

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Every Borromean clause has a changed crossing .

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Every Borromean clause has a changed crossing $\implies \Phi$ satisfiable.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018 3-

REIDEMEISTER DEFECT is NP-hard

イロト イポト イヨト イヨト ヨー のくで

35 / 40

Eric Sedgwick (DePaul University) 3-Manifold Topology IHP Paris - June 2018

Again, a very similar construction.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

But replace each component with a *twisted unknot*.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

But replace each component with a *twisted unknot*.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

This is a diagram of an unlink.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Show: Φ is satisfiable \iff Can trivialize diagram with deficit = n.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

 Φ is satisfiable, untwist ends of TRUE components, cost deficit n.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

What remains can be trivialized with *no* additional deficit.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Assume deficit = n.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Deficit = $n \implies$ each variable gets deficit 1.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Deficit move involves either x or $\neg x$ (not both).

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Call the component involved TRUE

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

Every Borromean clause has defice > 0.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

 $\implies \Phi$ satisfiable.

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

$EMBED_{2\rightarrow 3}$ is NP-hard

Eric Sedgwick (DePaul University)

3-Manifold Topology

IHP Paris - June 2018

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣へ⊙

 $\text{EMBED}_{2 \rightarrow 3}$ is NP-hard :

Uses a cabled link and Dehn surgery .					
			《□》 《卽》 《言》 《言》	E 900	
Eric Sedgwick	(DePaul University)	3-Manifold Topology	IHP Paris - June 2018	38 / 40	

Open Questions:

	Knots	Links
TRIVIALITY	NP, co-NP ^{a}	NP
TRIVIAL SUB-LINK	n/a	NP-complete
Unlinking Number	?	NP-hard
Reidemeister Defect	NP	NP-complete
Reidemeister Distance	?	NP-hard
3-Manifold Embeds in S^3	NP^{b}	NP-hard

 $^a\mathrm{Kuperberg};$ Lackenby; $^b\mathrm{Schleimer}$

Questions:

- 1 Is UNLINKING/UNKNOTTING NUMBER decidable?
- 2 Are UNLINKING NUMBER, REIDEMEISTER DISTANCE and EMBED_{2 \rightarrow 3} in NP?
- 3 Are Unlinking (Unknotting) Number and Reidemeister DISTANCE/DEFECT NP-hard for a single component?

Thanks!

 Eric Sedgwick (DePaul University)
 3-Manifold Topology
 IHP Paris - June 2018
 40 / 40